University of Macau Computer and Information Science Department CISB357 Fundamentals of Digital Image Processing Syllabus 2nd Semester 2014/2015 Part A – Course Outline

Elective course in Computer Science

Catalog description:

(2-2) 3 credits. This course introduces the fundamentals of digital image processing for senior undergraduate students. It emphasizes the general principles and techniques of image processing. Topics include digital image fundamentals, intensity transformations and spatial filtering, filtering in the frequency domain, image restoration and reconstruction, color image processing, wavelets and multiresolution processing, image compression and watermarking, morphological image processing, image segmentation, representation and description.

Course type:

Theoretical with substantial laboratory/practice content

Prerequisites:

Engineering Mathematics II

Textbook(s) and other required material:

- R. C. Gonzalez and R. E. Woods, *Digital Image Processing*, 3rd edition, Prentice Hall, 2008.
- R. C. Gonzalez, R. E. Woods and Steven L. Eddins, *Digital Image Processing Using MATLAB*, 2rd edition, Prentice Hall, 2009.

Major prerequisites by topic:

- 1. Basic knowledge in Calculus and Engineering Mathematics.
- 2. Basic knowledge in Linear system and linear convolution.
- 3. Programming knowledge of MATLAB or C++.

Course objectives:

- 1. Learn the fundamental concepts and applications of digital image processing. [a, c]
- 2. Learn the concepts of and how to perform Intensity transformations and spatial filtering. [a, c]
- 3. Understand the relationship between Filtering in the spatial and frequency domains. [a, c]
- 4. Understand the concepts of and how to perform Image restoration and reconstruction, Color image processing, Wavelets and multiresolution processing, Image compression and watermarking, Morphological image processing, Image segmentation, Representation and description. [a, c]

Topics covered:

- 1. **Digital image fundamentals (4 hours)** Fundamental Steps in Digital Image Processing; Image Sampling and Quantization.
- 2. Intensity transformations and spatial filtering (4 hours)- Basic Intensity Transformation Functions and Histogram Processing; Fundamentals of Spatial Filtering.
- 3. Filtering in the frequency domain (8 hours) The Discrete Fourier Transform (DFT) and the Basics of Filtering in the Frequency Domain; Image Smoothing and Sharpening Using Frequency Domain Filters.
- 4. **Image restoration and reconstruction (4 hours)** Model of the Image Degradation/Restoration Process and Noise Models; Noise reduction by spatial and frequency domain filtering.
- 5. Color image processing (4 hours) Color Fundamentals and Models; Color Transformations and Image Processing Techniques.
- 6. Wavelets and multiresolution processing (4 hours) Multiresolution Expansions and Wavelet Transforms.

- 7. **Image compression and watermarking (8 hours)** Fundamentals of data redundancy; Basic Compression Methods; Digital Image Watermarking.
- 8. **Morphological image processing (8 hours)** Erosion and Dilation, Opening and Closing; Basic Morphological Algorithms.
- 9. **Image segmentation (8 hours)** Point, Line, and Edge Detection; Thresholding and Region-Based Segmentation; Segmentation Using Morphological Watersheds.
- 10. Representation and description (4 hours) Image Representation; Boundary and Regional Descriptors.

Class/laboratory schedule:

Timetable	l work in hou	rs per week	No of teaching	Total hours	Total gradits	No/Duration of
Lecture	Tutorial	Practice	weeks	1 otal nouls	10tal Creuits	exam papers
2	Nil	2	14	56	3	1 / 3 hours

Student study effort required:

Class contact:	
Lecture	28 hours
Tutorial	28 hours
Other study effort	
Self-study	42 hours
Homework assignment	9 hours
Project	15 hours
Total student study effort	122 hours

Student assessment:

Final assessment will be determined on the basis of:

- Homework 20%
- Project 30%
- Final Exam 50%

Course assessment:

The assessment of course objectives will be determined on the basis of:

- 1. Homework, project and exams
- 2. Course evaluation

Course Outline:

Weeks	Topics	Course work
	Digital image fundamentals	
1	- Fundamental Steps in Digital Image Processing;	
	- Image Sampling and Quantization.	
	Intensity transformations and spatial filtering	
2	- Basic Intensity Transformation Functions and Histogram Processing;	Assignment#1
	- Fundamentals of Spatial Filtering.	
3.4	Filtering in the frequency domain	Assignment#2
3,4	- The Discrete Fourier Transform (DFT) and the Basics of Filtering in the Frequency	Assignment#2

	Domain;				
	- Image Smoothing and Sharpening Using Frequency Domain Filters				
	Image restoration and reconstruction				
5	- Model of the Image Degradation/Restoration Process and Noise Models;				
	- Noise reduction by spatial and frequency domain filtering.				
	Color image processing				
6	- Color Fundamentals and Models;	Assignment#3			
	- Color Transformations and Image Processing Techniques.				
7	Wavelets and multiresolution processing	Course Project			
/	- Multiresolution Expansions and Wavelet Transforms.	Course Project			
	Image compression and watermarking				
80	- Fundamentals of data redundancy;	A asignmont#4			
8,9	- Basic Compression Methods;	Assignment#4			
	- Digital Image Watermarking.				
	Morphological image processing				
10,11	- Erosion and Dilation, Opening and Closing;	Assignment#5			
	- Basic Morphological Algorithms.				
	Image segmentation				
12.12	- Point, Line, and Edge Detection;				
12,15	- Thresholding and Region-Based Segmentation;				
	- Segmentation Using Morphological Watersheds.				
	Representation and description				
14	- Image Representation;				
	- Boundary and Regional Descriptors.				

Student Disabilities Support Service:

The University of Macau is committed to providing an equal opportunity in education to persons with disabilities. If you are a student with a physical, visual, hearing, speech, learning or psychological impairment(s) which substantially limit your learning and/or activities of daily living, you are encouraged to communicate with your instructors about your impairment(s) and the accommodations you need in your studies. You are also encouraged to contact the Student Disability Support Service of the Student Counselling and Development Section (SCD), which provides appropriate resources and accommodations to allow each student with a disability to have an equal opportunity in education, university life activities and services at the University of Macau. To learn more about the service, please contact SCD at scd.disability@umac.mo, or 8397 4901 or visit the following website: http://www.umac.mo/sao/scd/sds/aboutus/en/scd_mission.php

Ĩ

Coordinator:

Chi Man Pun, Associate Professor of Computer Science and Engineering

Persons who prepared this description:

Chi Man Pun, July 8, 2015

Part B General Course Information and Policies

2 nd Semester	2014/2015		
Instructor:	Prof. Chi Man Pun	Office:	E11-4090
Office Hour:	Monday 15:30-17:30, Thursday 15:00-17:00, or	by appointment	
Phone:	8822-4369		
Email:	cmpun@umac.mo		

Time/Venue:

Lecture	Monday	09:30 - 11:20	J308
Practice	Friday	14:30 - 16:20	T103

Time/Venue:

Grading Distribution:

Percentage Grade	Final Grade	Percentage Grade	Final Grade	Percentage Grade	Final Grade
100 - 93	А	77 – 73	B-	57 - 53	D+
92 - 88	A-	72 - 68	C+	52 - 50	D
87 - 83	B+	67 – 63	С	below 50	F
82 - 78	В	62 - 58	C-		

Comment:

The objectives of the lectures are to explain and to supplement the textbook. Students who wish to succeed in this course should read the correspondence chapters of the textbook prior to the lecture and should work all homework assignments by themselves. You are encouraged to look at other sources (other references, etc.) to complement the lectures and textbook.

Homework Policy:

The completion and correction of homework is a powerful learning experience; therefore:

- There will be approximately 5 homework assignments.
- Homework is due two weeks after assignment unless otherwise noted, no late homework is accepted.
- Possible revision of homework grades may be discussed with the grader within one week from the return of the marked homework
- The course grade will be based on the average of the HW grades.

Course Project:

One course project will be assigned at about the middle of the semester.

Note

- Attendance is strongly recommended.
- Check course web pages for announcement, homework and lectures. Report any mistake on your grades within one week after posting.
- No make-up exam is given except for medical proof.
- Cheating is absolutely prohibited by the university.

Appendix:

Measurement Dimensions and Rubric for Programme Outcomes (a) to (j)

(a) An ability to apply knowledge of computing and mathematics to solve complex computing problems in computer science discipline.

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to apply knowledge of computing to the solution of complex computing problems.	Students understand the computing principles, and their limitations in the respective applications. Use the computing principles to formulate and solve complex computing problems.	Students understand the computing principles, and their limitations in the respective applications. But they have trouble in applying these computing principles to formulate and solve complex computing problems.	Students do not understand the computing principles, and their limitations in the respective applications. Do not know how to apply the appropriate computing principles to formulate and solve complex computing problems.
2. An ability to apply knowledge of mathematics to the solution of complex computing problems.	Students understand the mathematical principles, e.g., calculus, linear algebra, probability and statistics, relevant to computer science, and their limitations in the respective applications. Use mathematical principles to formulate and solve complex computing problems.	Students understand the theoretical background and know how to choose mathematical principles relevant to computer science. But they have trouble in applying these mathematical principles to formulate and solve complex computing problems.	Students do not understand the mathematical principles and do not know how to formulate and solve complex computing problems.

(b) An ability to apply knowledge of a computing specialisation, and domain knowledge appropriate for the computing specialisation to the abstraction and conceptualisation of computing models

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to apply knowledge of a computing specialisation, and domain knowledge to analyse and abstract complex computing models	Students understand the computing specialisation, and domain knowledge. They can also analyze and abstract complex computing models.	Students understand the computing specialisation, and domain knowledge. But they have trouble in analyzing and abstracting complex computing models.	Students have trouble in understanding the computing specialisation, and domain knowledge, and do not know how to analyze and abstract complex computing models.
2. An ability to apply knowledge of a computing specialisation, and domain knowledge to conceptualize complex computing models	Students understand the computing specialisation, and domain knowledge. They can also conceptualize complex computing models.	Students understand the computing specialisation, and domain knowledge. But they have trouble in conceptualizing complex computing models.	Students have trouble in understanding the computing specialisation, and domain knowledge, and do not know how to conceptualize complex computing models.

(c) An ability to analyse a problem, and identify and define the computing requirements appropriate to its solution

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to understand problem and identify the fundamental formulation	Students understand problem correctly and can identify the fundamental formulation	Student understand problem correctly, but have trouble in identifying the fundamental formulation	Students cannot understand problem correctly, and they do not know how to identify the fundamental formulation
2. An ability to choose and properly apply the correct techniques	Students know how to choose and properly apply the correct techniques to solve problems.	Students can choose correct techniques but have trouble in applying these techniques to solve problems.	Students have trouble in choosing the correct techniques to solve problems.

(d) An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs with appropriate consideration for public health and safety, social and environmental considerations

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to design, implement, and evaluate a computer- based system, process, component, or program	Students understand how to properly design, implement and evaluate a computer- based system, process, component, or program	Students understand how to design and implement a computer-based system, process, component, or program, but have trouble in evaluating it.	Students do not know how to design, implement, and evaluate a computer-based system, process, component, or program
2. An ability to understand what needs to be designed and the realistic design constraints regarding public health and safety, social and environmental considerations.	Students understand the design goals and the realistic design constraints regarding public health and safety, social and environmental considerations.	Students understand the design goals; but they are not clear about the realistic design constraints regarding public health and safety, social and environmental considerations.	Students have trouble in understanding what needs to be designed and the realistic design constraints regarding public health and safety, social and environmental considerations.

(e) An ability to function effectively on teams to accomplish a common goal

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to accomplish the assigned tasks	Students understand the assigned tasks well, and can accomplish the tasks to meet all the requirements.	Students understand the assigned tasks well, but have difficulties in fully accomplishing the tasks.	Students have trouble in understand the assigned tasks, and cannot accomplish them.
2. An ability to work with the other team members in an effective manner.	Students can effectively communicate with the other team members, and can work together to accomplish a common goal.	Students can effectively communicate with the other team members, but have trouble in working effectively to accomplish a	Students cannot effectively communicate with the other team members, and cannot work together to accomplish a common

common	goal.

```
goal.
```

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to	Students understand the	Students understand the	Students cannot understand
understand how to	design trade-offs and	design trade-offs and	the design trade-offs and
critique and analyse	constraints with respect to	constraints with respect to	constraints with respect to
design trade-offs and	liability and integrity of	liability and integrity of	liability and integrity of
constraints with respect	data, and context of use.	data, and context of use. But	data, and context of use.
to liability and integrity	They also know how to	they have trouble in	They do not know how to
of data, and context of	appropriately critique and	appropriately critiquing and	critique and analyze these
use.	analyze these tradeoffs.	analyzing these tradeoffs.	tradeoffs.
2. An ability to	Students understand the	Students understand the	Students cannot understand
understand how to	design trade-offs and	design trade-offs and	the design trade-offs and
critique and analyse	constraints with respect to	constraints with respect to	constraints with respect to
design trade-offs and	research issues of credit and	research issues of credit and	research issues of credit
constraints with respect	authorship, integrity of data,	authorship, integrity of data,	and authorship, integrity of
to research issues of	and informed consent. They	and informed consent. But	data, and informed
credit and authorship,	also know how to	they have trouble in	consent. They do not know
integrity of data, and	appropriately critique and	appropriately critiquing and	how to critique and analyze
informed consent.	analyze these tradeoffs.	analyzing these tradeoffs.	these tradeoffs.
3. An ability to	Students understand the	Students understand the	Students cannot understand
understand how to	design trade-offs and	design trade-offs and	the design trade-offs and
critique and analyse	constraints with respect to	constraints with respect to	constraints with respect to
design trade-offs and	conflict of interest, bribery,	conflict of interest, bribery,	conflict of interest, bribery,
constraints with respect	professional dissent,	professional dissent,	professional dissent,
to conflict of interest,	authorship, discrimination,	authorship, discrimination,	authorship, discrimination,
bribery, professional	and codes of ethics. They	and codes of ethics. But	and codes of ethics. They
dissent, authorship,	also know how to	they have trouble in	do not know how to
discrimination, and	appropriately critique and	appropriately critiquing and	critique and analyze these
codes of ethics	analyze these tradeoffs.	analyzing these tradeoffs.	tradeoffs.

(f) An understanding of professional, ethical, legal, security and social issues and responsibilities

(g) An ability to communicate effectively with a range of audiences

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to comprehend and write effective reports and clear design documents on complex computing activities.	Students produce well- organized reports and documents on complex computing activities, with adequate content and understandable language, grammar or syntax.	Students produce reports and documents on complex computing activities, with adequate content and language, grammar or syntax with some errors.	Students produce reports and documents with inadequate content, barely understandable language, grammar or syntax.
2. An ability to make effective presentations on complex computing activities to the computing community and the society at large.	Students make effective oral presentations and rational responses.	Students make oral presentations but cannot give rational responses.	Students are unable to make oral presentations and responses.

(h) An ability to analyse the local and global impact of computing on individuals, organisations, and society

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to analyse the local and global impact of computing on individuals and society	Students understand the local and global impact of computing on individuals and society, and can analyze such impact in terms of scope and depth.	Students understand the local and global impact of computing on individuals and society, but have trouble in analyzing such impact in terms of scope and depth.	Students cannot understand the local and global impact of computing on individuals and society
2. An ability to analyse the local and global impact of computing on organizations.	Students understand the local and global impact of computing on organizations, and can analyze such impact in terms of scope and depth.	Students understand the local and global impact of computing on organizations, but have trouble in analyzing such impact in terms of scope and depth.	Students cannot understand the local and global impact of computing on organizations

(i) Recognition of the need for and an ability to engage in continuing professional development

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to recognize the need for continuing professional development	Students understand the professional development, and recognize the need for continuing professional development	Students understand the professional development, but have trouble in recognizing the need for continuing professional development	Students cannot understand the professional development, and cannot recognize the need for continuing professional development
2. An ability to engage in continuing professional development	Students actively engage in continuing professional development, and achieve satisfactory.	Students engage in continuing professional development, but the performance achieved is not satisfactory.	Students do not engage in continuing professional development.

(*j*) An ability to use current techniques, skills, and tools necessary for computing practice with an understanding of the limitations.

Measurement Dimension	Excellent (80-100%)	Average (60-79%)	Poor (<60%)
1. An ability to use computer/IT skills and tools relevant to computing practice, and understands their limitations.	Students can correctly identify the computer/IT skills and tools relevant to computing practice, and understand their limitations. They can also apply these tools to solve practical computing problems.	Students can correctly identify the computer/IT skills and tools relevant to computing practice, and understand their limitations. But they have trouble in applying these tools to solve practical computing problems.	Students cannot correctly identify the computer/IT skills and tools relevant to computing practice, and understand their limitations. They have trouble in applying the appropriate tools to solve practical computing problems.
2. An ability to use the computing principles to model and analyse computing problems.	Students understand the computing principles relevant to computing problems. They can also use	Students understand the computing principles relevant to computing problems. But they have	Students have trouble in understanding computing principles relevant to computing problems. They

and understands the	these principles to model	trouble in applying these	do not know how to apply
limitations.	and analyse computing	principles, skills and tools to	these principles, skills and
	problems, and understand	model and analyse	tools to model and analyse
	the limitations.	computing problems, and	computing problems, and
		understand the limitations.	understand the limitations.