University of Macau

Undergraduate Civil Engineering, Computer Science, Electrical and Computer Engineering, Electromechanical Engineering Programs

Coordinating Unit:	Department of Mathematics, Faculty of Science and Technology								
Supporting Unit(s):	Nil								
Course Code:	MATB220 Year of Study: 2								
Course Title:	Engineering Mathematics II								
Compulsory/Elective:	Compulsory								
Course Prerequisites:	MATB120 Calculus II and MATB210 Engineering Mathematics I								
Prerequisite Knowledge:	The fundamental theories of calculus, e.g., limits, continuity, derivatives, partial derivatives, integrals, series.								
Duration:	One semester Credit Units: 3								
Class/Laboratory Schedule:	Three hours of lecture and one hour of tutorial per week.								
Laboratory/Software Usage:	Nil								
Course Description:	This course aims at preparing students to study their advanced engineering courses. Topics include linear algebra, ordinary differential equations, Laplace transformation, Fourier series & integrals, and partial differential equations.								
Course Objectives:	 To introduce the basic knowledge in engineering mathematics. To prepare students for the advanced courses in engineering. 								
	Upon completion of this course, students are expected to:								
	1. be able to solve the linear systems and eigenvalue problems; [PO: a]								
	2. be able to solve the ordinary differential equations; [PO: a]								
Learning Outcomes	3. be able to compute Laplace transforms and employ it for solving the initial value problems; [PO: a]								
(103).	4. be able to calculate Fourier series, and understand the Fourier integrals and transforms; [PO: a]								
	5. understand and be able to solve the partial differential equations by separation variable methods. [PO: a]								
Texts & References:	 *Advanced Engineering Mathematics (9th ed.), E. Kreysizig, John Wiley & Sons, 2006.* 								
(* recommended textbook(s))	 Advanced Engineering Mathematics (5th ed.), Peter V. O' Neil, Thomson Leaning, 2003. 								
	Assignments: 10%								
Student Assessment:	Quizzes & Midterm examination: 50%								
	Final examination: 40%								
Learning Outcome Assessment:	• assignments, quizzes, midterm and final examinations								

	☑ Lecture	□ Service learning
	□ Guest speakers	□ Internship
	□ Case study	□ Field study
Pedagogical	□ Role playing	□ Company visits
Methods:	□ Student presentation	□ e-learning
	Project	□ Independent study
	□ Simulation game	□ Others:
	☑ Exercises and problems	

Major Assessment Methods: For each Major Assessment Method below, please indicate the specific pedagogical methods involved (by putting a ✓ in the relevant box(es) on the right-hand side).	Case Study	Role Playing	Student Presentation	Individual project/paper	Group project/paper	Simulation Game	Exercises & problems	Service learning	Internship	Field Study	Company visits	Written examination	Oral examination	Others (please specify)
Class Participation/ Discussion (0%)														
Assignments (20%)							~							
Quizzes (5%)												~		
Midterm Exam (35%)												~		
Final Exam (40%)												~		
Others (please specify)														
Course Web: (if any)														

	Week	Topics	Assignment	LO no.
	no.		no.	
	1,2	Linear algebra: matrices, vectors, determinants, and linear systems Addition, scalar multiplication of matrices and vectors, matrix	1,2	1
		multiplication, linear systems, Gauss elimination, linear independence, rank of a matrix, Cramer's rule, inverse of a		
		matrix, vector spaces.		
	3	Linear Algebra: matrix eigenvalue problems	3	1
	4.5	First order ordinary differential equations	15	2
	4,5	Basic concepts of first order ODEs, separable equations, exact equations with integrating factors, first order linear ODEs	т,5	2
	6,7	Higher order linear ODEs	6,7	2
		Homogeneous linear equations with constant coefficients,		
Course Content:		Euler-Cauchy equations, Wronskian, nonhomogeneous linear		
(topic outline)		equations, methods of undetermined coefficients		
(topic outline)	8-9	Laplace transforms	8,9	3
		Laplace transforms, inverse Laplace transforms, shifting theorem, transformation of derivatives & integrals, solving ODEs by Laplace transforms, convolution, integral equations		
	10	Midterm examination		
	11-13	Fourier series, integrals, and transforms	10,11	4
		Fourier series, half range expansions, Fourier series in complex form, Fourier integrals, Fourier transforms		
	14	Partial differential equations	12	5
		Basic concepts, D'Alembert's solution of the wave equation, solution by separating variables.		
	TBA	Final Examination		

TBA: To be arranged by the Registry

	Program Outcomes	Co 5 Signi	ntribu 	ition t	to POs [#] > 1 Least		
		5	4	3	2	1	
	(a) apply knowledge of mathematics, science, and engineering	✓					
	(b) design and conduct experiments, and analyze data						
	(c) design components, systems or processes in presence of constraints						
	(d) Function in a multi-disciplinary team						
Contribution	(e) Engineering problem solving						
to Program	(f) Understand professional and ethical responsibility						
Outcomes:	(g) Communicate effectively						
	(h) Understand the impact of engineering solutions to the society						
	(i) Recognize the need and have the ability for lifelong learning						
	(j) Have knowledge of contemporary issues						
	(k) Apply the skills, techniques, modern engineering tools						
	(l) Use the computer/IT tools relevant to the discipline						
	 # Note 5: Significant contribution; 4: Supporting contribution; 3: Moderate contribution; 2: Marginal support; 1: Least support 	ution;					
Course Instructor(s):	Dr. Haiwei Sun						