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In this paper, we study a V-cycle multigrid method for linear systems arising from time-
dependent two-dimensional space-fractional diffusion equations. The coefficient matrices 
of the linear systems are structured such that their matrix-vector multiplications can 
be computed efficiently. The main advantage using the multigrid method is to handle 
the space-fractional diffusion equations on non-rectangular domains, and to solve the 
linear systems with non-constant coefficients more effectively. The main idea of the 
proposed multigrid method is to employ two banded splitting iteration schemes as 
pre-smoother and post-smoother. The pre-smoother and the post-smoother take banded 
splitting of the coefficient matrix under the x-dominant ordering and the y-dominant 
ordering, respectively. We prove the convergence of the proposed two banded splitting 
iteration schemes in the sense of infinity norm. Results of numerical experiments for time-
dependent two-dimensional space-fractional diffusion equations on rectangular, L-shape 
and U-shape domains are reported to demonstrate that both computational time and 
iteration number required by the proposed method are significantly smaller than those 
of the other tested methods.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the initial–boundary value problem of the two-dimensional space-fractional diffusion equation 
(SFDE):

∂u(x, y, t)

∂t
=d+(x, y, t) a Dα

x u(x, y, t) + d−(x, y, t) x Dα
b(y)u(x, y, t) + e+(x, y, t) c Dβ

y u(x, y, t)+
e−(x, y, t) y Dβ

d(x)u(x, y, t) + f (x, y, t), (x, y, t) ∈ � × (0, T ], (1.1)

u(x, y, t) =0, (x, y, t) ∈ ∂� × (0, T ], (1.2)

u(x, y,0) =ψ(x, y), (x, y) ∈ �̄, (1.3)
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Fig. 1. Shapes of � in different cases.

where α, β ∈ (1, 2), d±(x, y, t) and e±(x, y, t) are all nonnegative coefficients over the domain � ×(0, T ] holding d+ +d− > 0

and e+ + e− > 0, f (x, y, t) is the source term, ψ is a given initial condition, �̄ = [a, ḃ] × [c, ḋ]) \ ([b̊, ḃ] × [d̊, ḋ]), ∂� denotes 
boundary of �̄, � denotes interior of �̄, ḋ ≥ d̊ > c, ḃ ≥ b̊ > a,

b(y) =
{

ḃ, y ∈ (c, d̊),

b̊, y ∈ [d̊, ḋ),
d(x) =

{
ḋ, x ∈ (a, b̊),

d̊, x ∈ [b̊, ḃ).

Fig. 1(a) shows that � is a rectangular domain in the case of ḃ = b̊ and ḋ = d̊. Fig. 1(b) shows that � is an L-shape domain 
in the case of ḃ �= b̊ and ḋ �= d̊.

For a function v(x) with compact support on an interval [xL, xR ], the left-sided and the right-sided Riemann–Liouville 
fractional derivatives of v(x) are defined respectively by

xL Dγ
x v(x) := 1

�(2 − γ )

d2

dx2

x∫
xL

v(ξ)

(x − ξ)γ −1
dξ,

x Dγ
xR v(x) := 1

�(2 − γ )

d2

dx2

xR∫
x

v(ξ)

(ξ − x)γ −1
dξ.

The SFDE is a class of fractional differential equations which has been widely and successfully used in modeling of 
anomalous diffusive systems, unification of diffusion, description of fractional random walk and wave propagation phe-
nomenon in the last few decades [1,2,8,13,16,17]. Since analytical solutions of SFDEs are often inaccessible, many numerical 
schemes have been proposed to solve the SFDEs [7,10–12,18,20]. Nevertheless, the fractional differential operators are non-
local, for which discretization schemes tend to generate dense coefficient matrices. Hence, direct solvers like Gaussian 
elimination for solving the dense linear systems resulting from discretization of the SFDEs require O(N M6) operations and 
O(N M2 + M4) storage, provided that N and M2 are the numbers of temporal-grid points and spatial-grid points, respec-
tively. Such an expensive complexity motivates us to develop fast algorithms for solving discretized SFDEs.

For uniform-grid discretization of the SFDE on rectangular domain, the associated dense coefficient matrix in each tem-
poral step usually possesses block Toeplitz-like (BTL) structure whose matrix-vector multiplication can be fast computed via 
the fast Fourier transformation (FFT) with only O(M2 log M) operations and O(M2) storage. For the BTL linear system, there 
are a series of fast solvers proposed to solve it. For example, the generalized minimum residual (GMRES) methods with row 
approximation preconditioner in [15] and banded preconditioner in [9] are both efficient ones for solving the BTL linear 
systems resulting from uniform-grid discretization of the SFDEs even in the case of oscillating coefficients.

For uniform-grid discretization of the SFDE on non-rectangular domain (e.g., L-shape domain), the associated dense 
coefficient matrix in each temporal step is no longer BTL but a block matrix with each block being BTL. A matrix with 
such a structure still allows a fast matrix-vector multiplication whose operations cost and storage requirement are still 
of O(M2 log M) and O(M2), respectively. Although the above mentioned row approximation preconditioner and banded 
preconditioner can be extended to solving such linear systems by some variance, the GMRES method with these extended 
preconditioners converges more slowly for these non-BTL linear systems than it does for the BTL linear systems.

The main aim of this paper is to study a V-cycle multigrid method for solving the linear systems arising from time-
dependent two-dimensional SFDEs. The main advantage of using multigrid method is to handle SFDEs on non-rectangular 
domains and to solve SFDEs with oscillating coefficients more efficiently than the above mentioned solvers. In [14], Pang and 
Sun proposed a multigrid method with the damped Jacobi smoother to solve one-dimensional discretized SFDEs. However, 
it keeps uncertain if their method can be extended to handle the two-dimensional SFDEs, specially to the non-rectangular 
domains. In this paper, we propose a V-cycle multigrid method with banded splitting iteration schemes to solve the two-
dimensional SFDEs in non-rectangular domains. To our knowledge, although multigrid methods for solving integer-order 
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partial differential equations on non-rectangle domains have been thoroughly investigated (see, for instance, [21]), the coun-
terpart for SFDEs with non-constant coefficients has never been studied before. In the proposed V-cycle multigrid method, 
the pre-smoothing iteration takes a banded splitting of the coefficient matrix under x-dominant ordering, while y-dominant 
ordering for the post-smoother. Thus, in each pre-smoothing iteration, it requires to solve a banded linear system while 
in each post-smoothing iteration, it requires to solve a permuted banded linear system. That means, the operations cost 
and the storage requirement of each pre- or post-smoothing iteration are of O(M2 log M) and O(M2), respectively, which 
are actually dominated by operations cost and storage requirement of one matrix-vector multiplication of the coefficient 
matrix. Theoretically, we show the convergence of the proposed two banded splitting iteration schemes in the sense of 
infinity norm. Results of numerical experiments for time-dependent two-dimensional SFDEs on rectangular, L-shape and 
U-shape domains are reported to demonstrate that both computational time and iteration number required by the proposed 
multigrid method are significantly smaller than those of the other tested methods.

The rest of this paper is organized as follows. In Section 2, we study coefficient matrices arising from the uniform-grid 
discretizations of time-dependent two-dimensional SFDEs on rectangular and non-rectangular domains. In Section 3, we 
present a multigrid method using the proposed banded smoother for solving the linear systems deriving from Section 2. In 
Section 4, we prove the convergence of the proposed two banded splitting iteration schemes. In Section 5, numerical results 
are reported to show the effectiveness of the proposed multigrid method. Finally, some concluding remarks are given in 
Section 6.

2. Discretized time-dependent two-dimensional SFDEs

2.1. Discretized SFDE on rectangular domain

In this subsection, we discuss the discrete form of the SFDE (1.1)–(1.3) on rectangular domain (i.e., ḃ = b̊ and ḋ = d̊).
Let N and M be positive integers. Denote by τ = T /N , hx = (b̊ − a)/(M + 1) and hy = (d̊ − c)/(M + 1), the temporal step, 

spatial step in x direction and spatial step in y direction, respectively. Define the temporal girds, spatial grids in x-direction 
and spatial grids in y-direction, by {tn = nτ |0 ≤ n ≤ N}, {xi = a + ihx|0 ≤ i ≤ M + 1} and {y j = c + jhy |0 ≤ j ≤ M + 1}, 
respectively. Then, the vectors consisting of spatial-grid points with x-dominant ordering and y-dominant ordering are 
defined respectively by

PR,x,M =(P11, P21, ..., P M1, P12, P22, ..., P M2, ......, P1M , P2M , ..., P MM)T ∈ T
M2×1, (2.1)

PR,y,M =(P11, P12, ..., P1M , P21, P22, ..., P2M , ......, P M1, P M2, ..., P MM)T ∈ T
M2×1, (2.2)

where Tm×n denotes the set of all m × n matrices with entries belonging to the two-dimensional Euclidean space, Pij

denotes the point (xi, y j) for 0 ≤ i, j ≤ M + 1.
Let v(z) be a smooth function with compact support on ∈ [zL, zR ]. Let γ ∈ (1, 2). For simplicity, we assume the approxi-

mation of the fractional derivatives zL Dγ
z v(z) and z Dγ

zR v(z) to be following shifted numerical-integration formulas

xL Dγ
x v(z)|z=zL+ih ≈ ṽ+,i := − 1

hγ

i+1∑
j=1

g(γ )

i− j+1 v(zL + jh), 1 ≤ i ≤ K , (2.3)

x Dγ
xR v(z)|z=zL+ih ≈ ṽ−,i := − 1

hγ

K∑
j=i−1

g(γ )

j−i+1v(zL + jh), 1 ≤ i ≤ K , (2.4)

where h = (zR − zL)/(K + 1), g(γ )

i (0 ≤ i ≤ K ) are real numbers varying from different discretization schemes. Actually, 
there are a series of discretization schemes fitting in the forms of (2.3) and (2.4); see for instance [12,18,20]. Denote 
ṽ± = (ṽ±,1, ̃v±,2, ..., ̃v±,K )T, v = (v1, v2, ..., v K )T. Then, matrical forms of (2.3) and (2.4) are

ṽ+ = − 1

hγ
Gγ ,K v and ṽ− = − 1

hγ
GT

γ ,K v,

respectively, provided that Gγ ,K is a Toeplitz matrix [5] with its first column and its first row being

(g(γ )

1 , g(γ )

2 , ..., g(γ )

K )T ∈ R
K×1 and (g(γ )

1 , g(γ )

0 ,0, ...,0) ∈R
1×K ,

respectively, where Rm×n denotes the set of all m × n real matrices. Since Gγ ,K is a Toeplitz matrix, its matrix-vector 
multiplication can be fast computed via using FFT with only O(K ) storage and only O(K log K ) operations [5]. Moreover, 
the forward difference is used to approximate the temporal derivative ∂u

∂t throughout this paper. Then, we obtain an implicit 
finite difference discretization of the SFDE (1.1)–(1.3) on the uniform grids, PR,x,M , in the case of � being a rectangle as 
follows
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τ−1
(

un+1 − un
)

= −
(

h−α
x B(n+1)

R,x + h−β
y B(n+1)

R,y

)
un+1 + fn+1, 0 ≤ n ≤ N − 1, (2.5)

where un = u(PR,x,M , tn), fn = f (PR,x,M , tn),

B(n)
R,x = D(n)

R,+
(
IM ⊗ Gα,M

)+ D(n)
R,−(IM ⊗ GT

α,M), D(n)
R,± = diag(d±(PR,x,M , tn)),

B(n)
R,y = E(n)

R,+
(
Gβ,M ⊗ IM

)+ E(n)
R,−(GT

β,M ⊗ IM), E(n)
R,± = diag(e±(PR,x,M , tn)),

Ik denotes k × k identity matrix, “⊗” denotes the Kronecker product.
The resulting task from (2.5) is to recursively solve(

IM2 + ηxB(n+1)
R,x + ηyB(n+1)

R,y

)
un+1 = un + τ fn+1, 0 ≤ n ≤ N − 1, (2.6)

where ηx = τh−α
x , ηy = τh−β

y . Since the coefficient matrices in (2.6) are all BTL, their matrix-vector multiplications can 
be fast computed with only O(M2) storage and only O(M2 log M) operations by utilizing FFT and properties of Kronecker 
product.

2.2. Discretized SFDE on L-shape domain

In this subsection, we discuss the discrete form of the SFDE (1.1)–(1.3) on L-shape domain (i.e., ḃ �= b̊ and ḋ �= d̊). For 
simplicity, we assume b̊ − a = ḃ − b̊ and d̊ − c = ḋ − d̊ throughout the rest of this paper. This subsection actually gives an 
insight into the structure of coefficient matrices of the discretized SFDE on L-shape domain, which is quite different from 
the classical BTL one resulting from the uniform-grid discretization of the SFDEs on rectangular domain.

Let N and M be positive integers. Denote by τ = T /N , hx = (b̊ − a)/(M + 1) and hy = (d̊ − c)/(M + 1), the temporal step, 
spatial step in x-direction and spatial step in y-direction, respectively. The corresponding spatial-grid points in x-direction 
and spatial-grid points in y-direction are defined by {xi = a + ihx|0 ≤ i ≤ Ṁ + 1} and {y j = c + jhy|0 ≤ j ≤ Ṁ + 1}, respec-
tively, where Ṁ +1 = 2(M +1). Also, the vectors consisting of spatial-grid points with x-dominant ordering and y-dominant 
ordering are respectively defined by

PL,x,M =
(

{Pi1}m1
i=1 , {Pi2}m2

i=1 , ...,
{

PiṀ

}mṀ
i=1

)
∈ T

M̈×1, (2.7)

PL,y,M =
({

P1 j
}m1

j=1 ,
{

P2 j
}m2

j=1 , ..., {P Ṁ j}mṀ
j=1

)
∈ T

M̈×1, (2.8)

where Pij denotes the point (xi, y j) for 0 ≤ i, j ≤ Ṁ + 1, respectively, M̈ = 2ṀM − M2,

mi =
{

Ṁ, 1 ≤ i ≤ M,

M, M < i ≤ Ṁ.

By (2.3)–(2.4) and forward difference approximation of ∂u
∂t , we obtain an implicit finite difference discretization of the 

SFDE (1.1)–(1.3) on the uniform grids, PL,x,M , in the case of � being an L-shape domain as follows

τ−1(un+1 − un) = −
(

h−α
x B(n+1)

L,x + h−β
y B(n+1)

L,y

)
un+1 + fn+1, 0 ≤ n ≤ N − 1, (2.9)

where un = u(PL,x,M , tn), fn = f (PL,x,M , tn),

B(n)
L,x = D(n)

L,+B̂α,M + D(n)
L,−B̂T

α,M , D(n)
L,± = diag(d±(PL,x,M , tn)),

B(n)
L,y = E(n)

L,+B̌β,M + E(n)
L,−B̌T

β,M , E(n)
L,± = diag(e±(PL,x,M , tn)),

B̂α,M =
[

IM ⊗ Gα,Ṁ
IM̄ ⊗ Gα,M

]
, B̌β,M =

⎡
⎣ G(l,u)

β,Ṁ
⊗ IṀ G(r,u)

β,Ṁ
⊗ ĨM

G(l,d)

β,Ṁ
⊗ ĨT

M G(r,d)

β,Ṁ
⊗ IM

⎤
⎦ ,

ĨM = [IM OM×M̄ ]T, M̄ = Ṁ − M , Om×n denotes m × n zero matrix, G(l,u)

β,Ṁ
∈ R

M×M , G(r,u)

β,Ṁ
∈ R

M×M̄ , G(l,d)

β,Ṁ
∈ R

M̄×M and G(r,d)

β,Ṁ
∈

R
M̄×M̄ denote the partitions of the matrix Gβ,Ṁ such that

Gβ,Ṁ =
⎡
⎣ G(l,u)

β,Ṁ
G(r,u)

β,Ṁ

G(l,d)

β,Ṁ
G(r,d)

β,Ṁ

⎤
⎦ . (2.10)

The resulting task from (2.9) is to recursively solve(
IM̈ + ηxB(n+1)

L,x + ηyB(n+1)
L,y

)
un+1 = un + τ fn+1, 0 ≤ n ≤ N − 1, (2.11)
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where ηx = τh−α
x , ηy = τh−β

y . Note that the coefficient matrices in (2.11) are all block matrices with each block being BTL. 
Thus, matrix-vector multiplications of coefficient matrices in (2.11) can also be fast computed with only O(M2) storage and 
only O(M2 log M) operations.

3. Multigrid method

In this section, we propose a multigrid method (MGM) with two banded splitting iteration schemes as pre-smoother 
and post-smoother to solve the linear systems in (2.6) and (2.11). For convenience of statement, linear systems in (2.6) and 
(2.11) can be respectively simplified as

AR uR =bR , (3.1)

ALuL =bL, (3.2)

where bR and bL denote some given right hand sides resulting from (2.6) and (2.11), respectively,

AR = IM2 + ηxBR,x + ηyBR,y, AL = IM̈ + ηxBL,x + ηyBL,y,

BR,x and BR,y denote B(n)
R,x and B(n)

R,y in (2.6) for some n, respectively, BL,x and BL,y denote B(n)
L,x and B(n)

L,y in (2.11) for some n, 
respectively. For simplicity, in the rest of this section, we use A to denote AR or AL . And we also use

Au = b, (3.3)

to denote the linear system (3.1) or (3.2).
Define a sequence of spatial-grids sizes such that Mi = 2i − 1, 2 ≤ i ≤ l. Let M = Ml for some l > 2. The corresponding 

x-direction spatial step and y-direction spatial step are given by hx,i = (b̊ − a)/(Mi + 1) and hy,i = (d̊ − c)/(Mi + 1), respec-
tively, for 2 ≤ i ≤ l. Let Ai denote A with M = Mi for 2 ≤ i ≤ l. For convenience, we assume Ai is of size Ki × Ki for 2 ≤ i ≤ l. 
Denote by Si and S̃i , the pre-smoothing iteration and the post-smoothing iteration at ith grid, respectively, for 3 ≤ i ≤ l. 
Moreover, denote by Ii

i+1 ∈R
Ki×Ki+1 and Ii+1

i ∈ R
Ki+1×Ki , the restriction operator and the interpolation operator between ith 

and (i + 1)th grids. Then, one iteration of V-cycle MGM for solving (3.3) is given by

Algorithm 1 One iteration of V-cycle MGM.

Set : fh = b;
function uh =MGM(i, u0, fh, ν)

if i == 2 then
uh = A−1

i fh ;
return uh ;

else
iterate uh = Si(uh, fh) ν times with initial guess u0; %pre-smoothing iteration
e = MGM(i − 1, 0, Ii−1

i (fh − Ai uh), ν); % 0 denotes zero initial guess

uh = uh + Ii
i−1e;%correction

iterate uh = S̃i(uh, fh) ν times; %post-smoothing iteration
return uh ;

end if
end

Of particular interest in this paper is to propose two banded splitting iteration schemes as Si and S̃i . Denote Ai =
[a(i)

jk ]Ki
j,k=1 for 3 ≤ i ≤ l. Split Ai as Ai = Di − Ri for 3 ≤ i ≤ l, where the banded matrix Di = [d(i)

jk ]Ki
j,k=1 with bandwidth ω is 

the banded truncation of Ai such that

d(i)
jk =

{
a(i)

jk , | j − k| ≤ ω,

0, | j − k| > ω
.

Here, the bandwidth ω is a sufficiently small positive constant integer. Then, for a linear system

Aix = y, (3.4)

with a randomly given right hand side y ∈ R
Ki×1, one possible splitting is that

Dix = Rix + y,

which induces a banded iteration scheme for (3.4) as pre-smoother Si such that

xk+1 = Si(xk,y) := D−1
i (Rix

k + y) = xk + D−1
i (y − Aix

k), 3 ≤ i ≤ l, (3.5)

with an initial guess xk .
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From (2.6) and (2.11), we note that the discretization of both a Dα
x and x Dα

b(y)
are localized in the block diagonal of Ai . 

Thus, the banded matrix Di characterizes the x-direction fractional derivatives, a Dα
x and x Dα

b(y)
well. However, the discretiza-

tion of both c Dβ
y and y Dβ

d(x) are dispersedly distributed in Ai , for which the banded matrix Di is insufficient to characterize. 
In order to remedy this situation, in the following, we introduce another banded iteration scheme as S̃i .

We study the linear systems (3.3) under a permuted ordering. Define permutation matrices PR,i and PL,i such that

PR,y,Mi = PR,iPR,x,Mi , PL,y,Mi = PL,iPL,x,Mi , 3 ≤ i ≤ l.

Also, we use Pi to denote PR,i or PL,i . Then, it is easy to see that Pi is just a matrix transforming vectors from x-dominant 
ordering to y-dominant ordering. Let Ãi = PiAiPT

i . Denote Ãi = [ã(i)
jk ]Ki

j,k=1. Similarly, split Ãi as Ãi = D̃i − R̃i for 3 ≤ i ≤ l, 

where the banded matrix D̃i = [d̃(i)
jk ]Ki

j,k=1 with bandwidth ω is the banded truncation of Ãi such that

d̃(i)
jk =

{
ã(i)

jk , | j − k| ≤ ω,

0, | j − k| > ω.

Since Ãi is the coefficient matrix of the discretized SFDE under the y-dominant ordering, similar to the discussion above, D̃i

characterizes the discretization of both c Dβ
y and y Dβ

d(x) well. On the other hand, linear system (3.4) is actually equivalent to

Ãi x̃ = ỹ, 3 ≤ i ≤ l,

with x̃ = Pix, ỹ = Piy. Then, we obtain another splitting as follows

D̃i x̃ = R̃i x̃ + ỹ, 3 ≤ i ≤ l,

which induces another banded splitting iteration scheme for (3.4) as post-smoother S̃i such that

xk+1 = S̃i(xk,y) := PT
i D̃−1

i

(
R̃iPix

k + Piy
)

= PT
i D̃−1

i (D̃i − Ãi)Pix
k + PT

i D̃−1
i Piy

= xk + PT
i D̃−1

i Pi(y − PT
i ÃiPix

k)

= xk + PT
i D̃−1

i Pi(y − Aix
k), 3 ≤ i ≤ l, (3.6)

with an initial guess xk . Here, the construction of D̃i requires only O(ωKi) operations and only O(ωKi) storage through the 
relationship Ãi = PiAiPT

i for 3 ≤ i ≤ l, which is proportional to the number of unknowns in (3.4).

Remark. The positivity of the bandwidth ω is of great importance. Actually, if ω = 0, then both Si and S̃i are exactly 
the classical Jacobi iteration. It is well known that MGM with Jacobi smoother usually converges very slowly or sometimes 
even diverges, which is also shown in numerical experiments in Section 5. What makes a difference is that when ω > 0, 
the performance of MGM using the proposed banded smoother is significantly better than that of the MGM with the Jacobi 
smoother.

For the choice of restriction operator and interpolation operator, we refer to the typical piecewise linear restriction and 
piecewise linear interpolation. On the rectangular domain, the restriction R Ii

i+1 and the interpolation R Ii+1
i are defined by

R Ii
i+1 = JMi ⊗ JMi , R Ii+1

i = 4(R Ii
i+1)

T, 2 ≤ i ≤ l − 1, (3.7)

provided that for any positive integer k,

Jk = 1

4

⎡
⎢⎢⎢⎣

1 2 1
1 2 1

. . .

1 2 1

⎤
⎥⎥⎥⎦ ∈R

k×(2k+1). (3.8)

On the L-shape domain, the restriction L Ii
i+1 and the interpolation L Ii+1

i are defined by

LIi
i+1 =

[
JMi ⊗ Ĵi

J̃i ⊗ JMi

]
, LIi+1

i =
[

4JT
Mi

⊗ JT
Mi+1

J(r,u)
i

J(r,d)
i

]
, 2 ≤ i ≤ l − 1, (3.9)

where Ĵi = blockdiag(JMi , 1, JMi ), J̃i = blockdiag(1, JMi ),

J(r,d)
i =

[
2 O1×Mi

eMi+1,1 4JT
Mi

]
⊗ JT

Mi
, J(r,u)

i =
[

O O
J̄i O

]
, J̄i =

[
JT
Mi

O(Mi+1+1)×Mi

]
,

where eMi+1,1 denotes the first column of IMi+1 , O denotes a zero matrix with proper size.
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With components defined above, we furthermore define MGM(ν) iteration for solving the linear system (3.3) as follows:

Algorithm 2 MGM(ν) iteration.
Set : r0 = b;
do

uk = MGM(l, uk−1, b, ν); %k ≥ 1, u0 is an initial guess
rk = y − Auk; %compute current residual

until ‖rk‖2‖r0‖2
≤ 10−7 %stopping criterion

3.1. The complexity

We consider estimation of the complexity of Algorithm 1. Denote by J (M) and R(M), storage and operations required 
by Algorithm 1, respectively. Let J i and Ri(ν) denote the storage and the operations required by Algorithm 1 at ith grid, 
respectively, for 2 ≤ i ≤ l. Throughout the rest of this subsection, we denote by c, some positive constant independent of ν , 
Mi(2 ≤ i ≤ l) and l.

For banded matrices, it is well known that the matrix-vector multiplications D−1
i x and D̃−1

i x can be fast computed with 
O(ω2 Ki) operations and O(ωKi) storage via LU factorization for a randomly given vector x. Moreover, since Ai has the 
same structure as A, it is BTL on rectangular domain while it is a block matrix with each block being BTL on L-shape 
domain. Thus, matrix-vector multiplication of Ai requires only O(Ki log Ki) operations and only O(Ki) storage. Also, the 
permutation transformations in (3.6) require only O(Ki) trivial read–write operations and only O(Ki) storage. Moreover, by 
(2.1) and (2.7), we see that Ki is actually of O(M2

i ). Hence, we conclude that one iteration of both (3.5) and (3.6) require 
only O

(
M2

i log Mi
)

operations and only O
(
M2

i

)
storage. Also, since the restriction Ii

i+1 and the interpolation Ii+1
i defined in 

both (3.7) and (3.9) are sparse matrices with O(M2
i ) non-zero elements, the operations cost and the storage requirement at 

ith grid are dominated by those of smoothing iteration at ith grid in Algorithm 1 when i > 2. Note also that we solve the 
linear system at the coarsest grid directly. Hence, we conclude that

J2 ≤ cM4
2, R2(ν) ≤ cM6

2, J i ≤ cM2
i , Ri(ν) ≤ cνM2

i log Mi, 3 ≤ i ≤ l. (3.10)

In addition, by nothing it holds that

Mi = 2i − 1 <
(2i+1 − 1)

2
= Mi+1

2
< · · · < Ml

2l−i
. (3.11)

As a result, (3.11) and (3.10) induce that

J (M) =
l∑

i=2

J i ≤ cM4
2 + c

l∑
i=3

M2
i ≤ cM2

l∑
i=2

1

22(l−i)
= O(M2),

R(M) =
l∑

i=2

Ri(ν) ≤ cM6
2 + cν

l∑
i=3

M2
i log Mi ≤ cνM2 log M

l∑
i=2

1

22(l−i)
= O(νM2 log M).

Hence, we conclude that storage requirement and the operations cost of Algorithm 1 are of O
(
M2
)

and O(M2 log M) for 
fixed ν , respectively.

4. Convergence analysis

In this section, we firstly prove the convergence property of the pre-smoothing iteration (3.5) and the post-smoothing 
iteration (3.6). And then, we numerically verify the convergence of the two-grid method (TGM) associated with the MGM 
proposed in the previous section.

4.1. Convergence of pre-smoother and post-smoother

Denote by Sl = D−1
l Rl and S̃l = PT

l D̃−1
l R̃lPl , the iteration matrix of (3.5) and the iteration matrix of (3.6) for l ≥ 3, respec-

tively.

Definition 1. A matrix C = [ci j]m
i, j=1 ∈ R

m×m is called diagonally dominant (DD), if it satisfies

|cii | ≥
m∑

j=1
j �=i

|ci j|, 1 ≤ i ≤ m.

If the m inequalities are all strict, then C is called strictly diagonally dominant (SDD).
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Lemma 1. For a DD Toeplitz matrix W ∈R
m×m, WT is also DD.

Proof. Denote W = [wij]m
i, j=1. Since W is Toeplitz matrix, its entries can be written as

zi− j = wij, i, j ∈ {1,2...,m}.
For any j0 ∈ {1, 2, ..., m}, take i0 = m + 1 − j0. Then, w j0, j0 = z0 = wi0,i0 and

wij0 = zi− j0 = zi0−(m+1−i) = wi0,m+1−i, 1 ≤ i ≤ m. (4.1)

(4.1) implies that for any j0 ∈ {1, 2, ..., m}, there exists i0 ∈ {1, 2, ..., m} such that

|w j0 j0 | −
m∑

i=1
i �= j0

|wij0 | = |wi0i0 | −
m∑

j=1
j �=i0

|wi0 j|. (4.2)

Since W is DD, (4.2) induces that for any j ∈ {1, 2, ..., m}

|w jj| −
m∑

i=1
i �= j

|wij| ≥ 0.

That’s to say WT is DD. �
Theorem 2. Assume that both Gα,K and Gβ,K are DD with positive diagonal entries (DDPDE) for any K > 0. Then,

‖Sl‖∞ < 1, ‖S̃l‖∞ < 1, ∀l ≥ 3.

Proof. Let AR,l and AL,l denote AR in (3.1) and AL in (3.2) with M = Ml , respectively. Then,

AR,l = IM2
l
+ ηx,lBR,x,l + ηy,lBR,y,l, AL,l = IM̈l

+ ηx,lBL,x,l + ηy,lBL,y,l,

where M̈l = 3M2
l + 2Ml , ηx,l = τh−α

x,l , ηy,l = τh−β

y,l

BR,x,l = DR,+,l
(
IMl ⊗ Gα,Ml

)+ DR,−,l(IMl ⊗ GT
α,Ml

),

BR,y,l = ER,+,l
(
Gβ,Ml ⊗ IMl

)+ ER,−,l(GT
β,Ml

⊗ IMl ),

BL,x,l = DL,+,lB̂α,Ml + DL,−,lB̂
T
α,Ml

, BL,y,l = EL,+,lB̌β,Ml + EL,−,lB̌
T
β,Ml

,

DR,±,l , ER,±,l , DL,±,l and EL,±,l denote diag(d±(PR,x,Ml , tn)), diag(e±(PR,x,Ml , tn)), diag(d±(PL,x,Ml , tn)) and
diag(e±(PL,x,Ml , tn)) for some n, respectively. Note that both Gα,K and Gβ,K are DDPDE and Toeplitz matrices for any 
K > 0. By Lemma 1, both GT

α,K and GT
β,K are also DDPDE. Note also that d± ≥ 0, e± ≥ 0, d+ + d− > 0 and e+ + e− > 0. Thus, 

we conclude that both AR,l and AL,l are DDPDE. Recall that we use Al to denote AR,l and AL,l . That’s to say, Al is DDPDE. 
Since Dl is in addition a banded truncation of Al , Dl is also DDPDE, which guarantees the invertibility of Dl .

Recall that we assume Al is of size Kl × Kl . Let Cm×n denote the set of all m × n complex matrices. For a vector 
x = (x1, x2, ..., xKl )

T ∈ C
Kl×1 with ‖x‖∞ = 1, let y = (y1, y2, ..., yKl )

T = Slx. Then, Rlx = Dly. Let |ym| = ‖y‖∞ for some 
m ∈ {1, 2, ..., Kl}. Recall that the banded matrix Dl = [d(l)

jk ]Kl
j,k=1 has a bandwidth ω and Al = Dl − Rl . On the other hand, let 

Bx,l denote BR,x,l or BL,x,l and let By,l denote BR,y,l or BL,y,l . Then, Al can be written as Al = IKl + ηx,lBx,l + ηy,lBy,l . Denote 
Rl = [r(l)

jk ]Kl
j,k=1, Bx,l = [b(x,l)

jk ]Kl
j,k=1 and By,l = [b(y,l)

jk ]Kl
j,k=1. Then, Dly = Rlx implies

|ym|
⎛
⎝d(l)

mm −
∑

1≤k≤Kl,0<|k−m|≤ω

|d(l)
mk|
⎞
⎠≤

∣∣∣∣∣∣
Kl∑

k=1

d(l)
mk yk

∣∣∣∣∣∣=
∣∣∣∣∣∣

∑
1≤k≤Kl,|k−m|>ω

r(l)
mkxk

∣∣∣∣∣∣≤
∑

1≤k≤Kl,|k−m|>ω

|r(l)
mk|. (4.3)

Note that r(l)
jk = ηx,lb

(x,l)
jk + ηy,lb

(y,l)
jk for | j − k| > ω and

d(l)
jk =

⎧⎪⎨
⎪⎩

1 + ηx,lb
(x,l)
j j + ηy,lb

(y,l)
j j , j = k,

ηx,lb
(x,l)
jk + ηy,lb

(y,l)
jk , 0 < | j − k| ≤ ω,

0, | j − k| > ω.
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Hence, by (4.3) and the fact that Bx,l and By,l are both DDPDE,

‖Slx‖∞ = |ym| ≤

∑
1≤k≤Kl,|k−m|>ω

∣∣∣ηx,lb
(x,l)
mk + ηy,lb

(y,l)
mk

∣∣∣
1 + ηx,lb

(x,l)
mm + ηy,lb

(y,l)
mm − ∑

1≤k≤Kl,0<|k−m|≤ω

∣∣∣ηx,lb
(x,l)
mk + ηy,lb

(y,l)
mk

∣∣∣

≤

∑
1≤k≤Kl,|k−m|>ω

∣∣∣ηx,lb
(x,l)
mk + ηy,lb

(y,l)
mk

∣∣∣
1 + ∑

1≤k≤Kl,|k−m|>ω

∣∣∣ηx,lb
(x,l)
mk + ηy,lb

(y,l)
mk

∣∣∣ < 1. (4.4)

Since x is an arbitrary vector on the unit sphere, (4.4) actually induces

‖Sl‖∞ = max‖x‖∞=1
‖Slx‖∞ < 1, ∀l ≥ 3.

Since Ã = PlAlPT
l is the coefficient matrix under y-dominant ordering of grid points, Ãl has similar structure to Al . Hence, 

it similarly holds that ‖D̃−1
l R̃l‖∞ < 1, which induces that

‖S̃l‖∞ = ‖PT
l D̃−1

l R̃lPl‖∞ ≤ ‖PT
l ‖∞‖D̃−1

l R̃l‖∞‖Pl‖∞ = ‖D̃−1
l R̃l‖∞ < 1, l ≥ 3.

The proof is complete. �
Remark. We remark that Gγ ,K arising from several discretization schemes satisfies the assumption in Theorem 2. For in-
stance, the first-order discretization scheme proposed in [12] holds those assumptions for γ ∈ (1, 2). The second-order 
discretization scheme proposed in [20] holds those assumptions for γ ∈ [

√
17−1

2 , 2). Also, the discretization scheme proposed 
in [18] holds those assumptions for γ ∈ [γ ∗, 2) where γ ∗ ≈ 1.5546 is a solution of the equation 33−γ − 4 · 23−γ + 6 = 0. 
Note that convergence of Sl and S̃l guarantee that high frequency error components [3] can be reduced in each pre- or 
post-smoothing iteration, which is a necessary property of smoothers to lead to the convergence of MGM; see for instance 
[3]. Besides, the assumption in Theorem 2 guarantees the invertibility of Dl , under which the banded smoother works. Thus, 
in the following, we only focus on those discretization schemes which satisfy the assumption in Theorem 2.

4.2. Verification for convergence of TGM

Let ν = 1. Then, the iteration matrix of TGM is given by [6]

Tl = S̃l(IKl − Il
l−1A−1

l−1Il−1
l )Sl, l ≥ 3.

In the following discussion, we verify the convergence of TGM numerically. That is, we compute ‖Tl‖2 with different l
directly. Set ω = τ = d+ = e− ≡ 1 and d− = e+ ≡ 5. Let hx,i = hy,i = 1/(Mi + 1) for l ≥ 2. We also assume ḃ = b̊ and ḋ = d̊
(i.e., the rectangular domain).

For the choice of the real numbers g(γ )

k in (2.3) and (2.4), we refer to both the first-order shifted Grünwald formula pro-
posed in [12] and the second-order discretization scheme proposed in [20]. Coefficients of the first-order shifted Grünwald 
formula in [12] are given by

g(γ )

k = −w(γ )

k , k ≥ 0, (4.5)

where

w(γ )

0 = 1, w(γ )

k =
(

1 − γ + 1

k

)
w(γ )

k−1, k ≥ 1. (4.6)

Coefficients of the second-order discretization scheme proposed in [20] are given by

g(γ )

0 = −γ

2
w(γ )

0 , g(γ )

k = γ − 2

2
w(γ )

k−1 − γ

2
w(γ )

k , k ≥ 1, (4.7)

where w(γ )

k (k ≥ 0) are given by (4.6).
As mentioned above, the second-order discretization scheme (4.7) satisfies the assumption in Theorem 2 only when 

γ ∈ [
√

17−1
2 , 2). Thus, we compare (4.5) and (4.7) only for the case α, β ∈ [

√
17−1

2 , 2). The corresponding computational 
results are listed in Table 1 for the first-order discretization scheme (4.5) and in Table 2 for the second-order discretization 
scheme (4.7).
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Table 1
Values of ‖Tl‖2 with different l and (α, β) when the first-order discretization scheme (4.5) is used.

Ml + 1 (α,β) with α = β (α,β) with α �= β

(1.8,1.8) (1.9,1.9) (1.99,1.99) (1.6,1.7) (1.6,1.8) (1.6,1.9)

23 0.35 0.39 0.44 0.33 0.36 0.39
24 0.49 0.57 0.68 0.42 0.46 0.52
25 0.59 0.69 0.83 0.52 0.57 0.64
26 0.67 0.77 0.92 0.62 0.69 0.77

Table 2
Values of ‖Tl‖2 with different l and (α, β) when the second-order discretization scheme (4.7) is used.

Ml + 1 (α,β) with α = β (α,β) with α �= β

(1.8,1.8) (1.9,1.9) (1.99,1.99) (1.6,1.7) (1.6,1.8) (1.6,1.9)

23 0.29 0.36 0.44 0.28 0.31 0.36
24 0.37 0.49 0.67 0.41 0.47 0.53
25 0.44 0.59 0.82 0.56 0.65 0.73
26 0.51 0.67 0.91 0.76 0.90 0.99

When α = β , ‖Tl‖2 in Table 2 is smaller than that in Table 1. That means, the TGM associated with the scheme (4.7)
has a better convergence than the TGM associated with the scheme (4.5) for the case α = β . Tables 1–2 also show that 
when α is away from β , ‖Tl‖2 in Table 1 increases much slower than ‖Tl‖2 in Table 2 as l increases. Especially, when Ml is 
large, ‖Tl‖2 in Table 1 is smaller than ‖Tl‖2 in Table 2 for the case α �= β . That implies when α is away from β , the TGM 
associated with the scheme (4.5) is more robust than the TGM associated with the scheme (4.7) when the size of matrix 
changes.

5. Numerical results

In this section, we use three examples with rectangular domains, one example with L-shape domain and one example 
with U-shape domain to test the proposed MGM with the banded smoother (MGMBS). All numerical experiments are 
performed via MATLAB R2013a on a PC with the configuration: Intel(R) Core(TM) i5-4590 CPU 3.30 GHz and 8 GB RAM.

Define the relative error

EN,M = ‖u − ũ‖∞
‖u‖∞

,

where u and ũ denote the exact solution and the approximate solution deriving from some iterative solvers. Since the 
results of EN,M of different solvers are always the same for the same problem, we won’t list results of EN,M for examples 
with rectangular domains in the following. But since it is unusual to utilize uniform-grid discretization to discretize the 
SFDE on non-rectangular domains, results of EN,M for examples with non-rectangular domains will be listed to illustrate the 
applicability of the discretization. Note that there are N linear systems to be solved. Thus, we denote by “iter”, the average 
of the N iteration numbers. Denote by CPU, the running time of some algorithms by unit second. For convenience, we use 
MGMBS(ω) to denote Algorithm 2 with the proposed banded smoother of a bandwidth ω. Moreover, we take un as an 
initial guess of un+1(0 ≤ n ≤ N − 1) for all experiments and all tested solvers in this section.

As the discussion above, we have different choices of discretization schemes for the approximation of the fractional 
derivatives and different choices of the bandwidth ω. As mentioned in the remark after Theorem 2, for the second-order 
discretization scheme (4.7), we focus MGMBS(ω) only on the case α, β ∈ [

√
17−1

2 , 2). Hence, when min{α, β} ∈ (1, 
√

17−1
2 ), 

we only use the first-order discretization scheme (4.5). In the following, we use Example 1 to determine the optimal value 
of ω and to examine which discretization scheme is more suitable for MGMBS(ω) when α, β ∈ [

√
17−1

2 , 2).

Example 1. Consider the two-dimensional SFDE (1.1)–(1.3) with

u(x, y, t) = exp(−t)x2(2 − x)2 y2(2 − y)2, d+(x, y, t) = exp(x)xα(1 + y),

d−(x, y, t) = (4 − x)(1 + y), e+(x, y, t) = (1 + y)yβ(1 + x),

e−(x, y, t) = (2 − y)(1 + x), � = (0,2) × (0,2), T = 1.

We use MGMBS(ω) with both the first-order discretization scheme (4.5) and the second-order discretization scheme (4.7)
to solve Example 1. The corresponding results are listed in Table 3 for the scheme (4.5) and Table 4 for the scheme (4.7).

Coinciding with Tables 1–2, Tables 3–4 show that (i) the performance of the proposed algorithm for the second-order 
discretization scheme (4.7) is better than that for the first-order discretization scheme (4.5) when α = β ∈ [

√
17−1

2 , 2); 
(ii) the performance of the proposed algorithm for the first-order discretization scheme (4.5) is better than that for the 
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Table 3
Performance of MGMBS(ω) with different values of ω when N = 24, ν = 1 and the first-order discretization scheme (4.5) is used.

(α,β) M + 1 MGMBS(1) MGMBS(3) MGMBS(4) MGMBS(6)

iter CPU iter CPU iter CPU iter CPU

(1.1,1.1) 27 11.0 2.03 s 11.0 2.09 s 11.0 2.14 s 11.0 2.19 s
28 12.1 7.57 s 12.0 7.83 s 12.0 7.33 s 12.0 7.98 s
29 14.0 57.48 s 14.0 58.53 s 14.0 58.20 s 14.0 60.68 s

(1.1,1.5) 27 15.0 2.70 s 14.0 2.60 s 14.1 2.68 s 15.1 2.95 s
28 17.0 10.47 s 16.1 9.37 s 16.0 10.10 s 17.0 10.96 s
29 19.0 77.61 s 18.0 75.38 s 18.0 76.76 s 18.1 79.85 s

(1.6,1.6) 27 9.0 1.65 s 13.0 2.41 s 13.0 2.46 s 14.0 2.73 s
28 9.0 5.57 s 13.0 7.94 s 13.0 7.86 s 14.0 8.79 s
29 9.1 37.98 s 13.0 53.97 s 14.0 58.67 s 15.0 64.89 s

(1.6,1.9) 27 13.0 2.33 s 17.0 3.12 s 17.0 3.18 s 18.0 3.46 s
28 14.0 8.33 s 18.0 10.76 s 19.0 10.96 s 19.0 12.41 s
29 14.0 57.50 s 19.0 77.79 s 20.0 83.07 s 21.0 90.22 s

(1.9,1.9) 27 15.0 2.70 s 20.0 3.66 s 21.0 3.92 s 22.0 4.20 s
28 16.0 9.55 s 21.0 12.95 s 22.0 12.55 s 23.0 14.82 s
29 16.0 65.43 s 23.0 94.15 s 24.0 98.38 s 25.0 106.15 s

Table 4
Performance of MGMBS(ω) with different values of ω when N = 24, ν = 1 and the second-order discretization scheme (4.7) is used.

(α,β) M + 1 MGMBS(1) MGMBS(3) MGMBS(4) MGMBS(6)

iter CPU iter CPU iter CPU iter CPU

(1.6,1.6) 27 8.0 1.52 s 12.0 2.27 s 13.0 2.49 s 14.0 2.80 s
28 8.0 4.86 s 13.0 7.79 s 14.0 8.39 s 15.0 10.00 s
29 8.0 33.51 s 13.0 54.52 s 15.0 63.10 s 16.0 68.78 s

(1.6,1.9) 27 12.0 2.19 s 21.0 3.84 s 22.0 4.07 s 23.0 4.34 s
28 13.0 7.27 s 27.0 16.21 s 29.0 16.31 s 31.0 18.33 s
29 13.0 52.95 s 31.0 124.28 s 35.0 142.28 s 39.0 163.69 s

(1.9,1.9) 27 12.0 2.16 s 18.0 3.29 s 19.0 3.57 s 19.0 3.67 s
28 12.0 7.12 s 19.0 10.85 s 20.0 11.60 s 21.0 13.24 s
29 12.0 49.42 s 20.0 82.35 s 21.0 87.21 s 22.0 94.38 s

second-order discretization scheme (4.7) when α is away from β . Thus, in the following experiments, we focus MGMBS(ω)

with the scheme (4.5) on the case α �= β or min{α, β} ∈ (1, 
√

17−1
2 ) and focus MGMBS(ω) with scheme (4.7) on the case 

α = β ∈ [
√

17−1
2 , 2). Moreover, we see that the performance of MGMBS(1) is generally better than MGMBS(ω) with ω

larger than 1. The reason may be that when ω = 1, high frequency error components can be eliminated efficiently by 
smoothing procedure and low frequency error components can be removed via correction procedure. However, when ω is 
large, both low and high frequency error components are removed in the smoothing procedure, it may not be effective for 
the convergence of MGM iterations; see, for instance, [3]. Indeed, the computational cost for large ω is higher than that for 
ω = 1. In the following experiments, we focus on the results for ω = 1 only.

Denote by MGMJS, Algorithm 2 with Jacobi smoother. For the remaining numerical experiments, we compare MGMBS(1) 
with MGMJS and preconditioned GMRES methods to illustrate high efficiency of MGMBS(1). Note that when ω = 0, both the 
pre-smoother (3.5) and the post-smoother (3.6) are exactly the Jacobi smoother. Hence, comparing MGMBS(1) and MGMJS 
also examines the importance of the positivity of the bandwidth. Moreover, we set ‖rk‖2‖r0‖2

≤ 10−7 as stopping criterion for 
GMRES in all experiments of this section, where rk denotes the residual at kth GMRES iteration. The stopping criterion of 
MGMBS(1) is given by Algorithm 2. Also, it is well known that another way to generate the matrices on coarse grid, Ai and 
Ãi is the Galerkin coarsening technique. i.e.,

Ai = Ii
i+1Ai+1Ii+1

i , Ãi = Ii
i+1Ãi+1Ii+1

i , 2 ≤ i ≤ l − 1. (5.1)

In order to further verify applicability of the proposed banded smoother, we also test MGMBS(1) with coarse grid matrices 
given by (5.1), which is denoted by GMGMBS(1). For the case of constant coefficients and in the rectangular domain, the 
finest grid matrix is exact block Toeplitz. Therefore, the coarser grid matrices will keep the block Toeplitz structure; see, for 
more details, [19]. Nevertheless, (5.1) will distort the block Toeplitz-like structure of the coarser grid matrices in the case of 
variable coefficients, which may lead to the expensive matrix-vector multiplication for the coarser grid matrices; see [14]. 
Thus, we only test GMGMBS(1) for the case of constant coefficient (see Example 2 below).
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Table 5
Results of GMGMBS(1), MGMBS(1), MGMJS and BCCB preconditioner, when N = 24 and the scheme (4.5) is used.

(α,β) M + 1 GMGMBS(1) MGMBS(1) MGMJS BCCB

iter CPU iter CPU iter CPU iter CPU

(1.1,1.5) 27 6.3 0.91 s 12.0 1.26 s 33.6 5.16 s 14.4 1.92 s
28 7.4 5.18 s 15.1 8.78 s 46.2 22.61 s 17.6 7.37 s
29 9.3 34.79 s 18.2 51.52 s 62.4 219.66 s 20.9 67.21 s

(1.5,1.5) 27 9.0 1.21 s 8.0 0.87 s 12.1 1.86 s 12.9 1.66 s
28 8.0 5.48 s 8.0 4.84 s 12.1 6.84 s 14.0 5.92 s
29 8.0 29.95 s 9.0 26.33 s 13.1 52.66 s 16.0 50.94 s

(1.6,1.9) 27 15.0 1.95 s 15.0 1.56 s 39.1 6.54 s 16.9 2.02 s
28 16.0 10.75 s 15.0 8.78 s 31.1 18.50 s 20.9 8.40 s
29 15.0 54.16 s 15.0 42.72 s 36.1 130.45 s 25.0 82.56 s

Table 6
Results of GMGMBS(1), MGMBS(1), MGMJS and BCCB preconditioner, when N = 24 and the scheme (4.7) is used.

(α,β) M + 1 GMGMBS(1) MGMBS(1) MGMJS BCCB

iter CPU iter CPU iter CPU iter CPU

(1.6,1.6) 27 6.0 0.82 s 6.0 0.65 s 7.0 1.12 s 12.0 1.39 s
28 6.0 4.28 s 6.0 3.72 s 7.0 3.29 s 14.0 5.87 s
29 6.0 23.10 s 6.0 18.12 s 8.0 30.46 s 16.0 50.49 s

(1.75,1.75) 27 8.0 1.08 s 8.0 0.87 s 9.0 1.41 s 12.1 1.43 s
28 8.0 5.50 s 8.0 4.84 s 9.0 4.27 s 14.0 5.66 s
29 8.0 29.95 s 8.0 23.56 s 9.0 34.10 s 17.0 54.38 s

(1.9,1.9) 27 10.0 1.33 s 10.0 1.05 s 25.0 3.80 s 13.0 1.49 s
28 10.0 6.83 s 10.0 5.96 s 18.0 8.48 s 15.0 5.86 s
29 10.0 36.85 s 10.0 28.98 s 11.0 41.37 s 16.9 53.60 s
210 10.0 168.07 s 10.0 127.18 s 11.0 211.03 s 20.5 253.65 s

Example 2. Consider the two-dimensional SFDE (1.1)–(1.3) with

u(x, y, t) = exp(−t)x2(2 − x)2 y2(2 − y)2,

d+ = e+ ≡ 1, d− = e− ≡ 2, � = (0,2) × (0,2), T = 1.

In the case of constant coefficient, A is of block Toeplitz with Toeplitz block structure. It is well known that GMRES with 
Strang’s block circulant with circulant block (BCCB) preconditioner [4] is an efficient solver for such linear systems. We solve 
Example 2 by GMRES with BCCB preconditioner and MGMJS, MGMBS(1), GMGMBS(1) with ν = 1. The corresponding results 
are listed in Table 5 for the first-order discretization scheme (4.5) and in Table 6 for the second-order discretization scheme 
(4.7).

From Tables 5–6, we see that the performance of GMGMBS(1) is as almost the same as MGMBS(1), which implies that our 
proposed smoother works in the sense of both geometry and algebraic multigrid. Also, the iteration number and CPU cost 
of GMGMBS(1) and MGMBS(1) are in general less than both of MGMJS and GMRES with BCCB preconditioner, which means 
multigrid method with the proposed banded smoother is more efficient that MGMJS and BCCB for Example 2. Moreover, 
better performance of GMGMBS(1) and MGMBS(1) compared with MGMJS also suggests the importance of positivity of the 
bandwidth ω.

Example 3. Consider the two-dimensional SFDE (1.1)–(1.3) with

u(x, y, t) = exp(−t)x2(2 − x)2 y2(2 − y)2, d+(x, y, t) = [1 + exp(−t)]exp(x2 + y)xα,

d−(x, y, t) = [1 + exp(−t)]exp(2x − x2 + y)(2 − x)α, e+(x, y, t) = [1 + exp(−t)]exp(y2 + x)yβ,

e−(x, y, t) = [1 + exp(−t)]exp(2y − y2 + x)(2 − y)β, � = (0,2) × (0,2), T = 1.

Note that d+ , d− , e+ and e− are no longer constants in Example 3. In order to apply the BCCB preconditioner, we take the 
averages of these coefficients on the grid points. Also, the row approximation preconditioner proposed in [15] is efficient for 
solving the SFDEs with non-constant coefficients. Take 5 interpolating points in each direction for the row approximation 
preconditioner and denote it by P(5). The results of BCCB, P(5), MGMBS(1) and MGMJS with ν = 1, are listed in Table 7 for 
the first-order discretization scheme (4.5) and in Table 8 for the second-order discretization scheme (4.7).

From Tables 7–8, we see that both CPU cost and iteration number of MGMBS(1) are much less than those of other three 
solvers for Example 3, which means MGMBS(1) is the most efficient one among the four solvers. Moreover, better perfor-
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Table 7
Results of MGMBS(1), MGMJS, P(5) and BCCB, when N = 24 and the scheme (4.5) is used.

(α,β) M + 1 MGMBS(1) MGMJS P(5) BCCB

iter CPU iter CPU iter CPU iter CPU

(1.1,1.5) 27 14.1 2.95 s 52.0 8.88 s 62.5 23.56 s 296.6 210.19 s
28 17.0 11.34 s 72.0 37.15 s 89.8 130.26 s 824.3 2084.67 s
29 20.0 89.64 s 96.0 391.12 s 134.7 1503.40 s 2134.6 59341.45 s

(1.5,1.5) 27 8.0 1.87 s 16.0 2.78 s 36.8 13.32 s 142.5 53.45 s
28 8.0 6.53 s 17.9 9.33 s 47.9 63.80 s 184.6 310.61 s
29 9.0 46.92 s 18.0 73.74 s 62.9 562.59 s 233.1 5285.75 s

(1.6,1.9) 27 12.1 2.59 s 57.0 9.56 s 44.8 18.01 s 91.2 23.65 s
28 13.0 9.16 s 74.0 38.26 s 59.1 81.74 s 117.1 134.12 s
29 13.0 62.92 s 91.0 372.73 s 79.8 772.04 s 151.7 2292.43 s

Table 8
Results of MGMBS(1), MGMJS, P(5) and BCCB, when N = 24 and the scheme (4.7) is used.

(α,β) M + 1 MGMBS(1) MGMJS P(5) BCCB

iter CPU iter CPU iter CPU iter CPU

(1.6,1.6) 27 8.0 1.88 s 14.0 2.53 s 34.8 12.75 s 140.8 51.70 s
28 8.0 6.56 s 15.0 8.40 s 44.4 60.42 s 160.0 239.09 s
29 8.0 43.35 s 16.0 68.26 s 57.2 511.85 s 179.8 3163.72 s

(1.75,1.75) 27 7.0 1.71 s 17.0 3.02 s 33.1 12.15 s 77.6 18.52 s
28 8.0 6.55 s 19.0 10.71 s 43.3 58.30 s 89.1 84.61 s
29 8.0 43.40 s 19.0 97.99 s 54.5 472.28 s 105.4 1190.28 s

(1.9,1.9) 27 10.0 2.23 s 24.0 4.19 s 35.3 12.91 s 55.7 10.28 s
28 10.0 7.64 s 24.0 13.44 s 44.6 62.09 s 66.6 50.20 s
29 11.0 54.99 s 24.0 97.99 s 57.1 506.85 s 81.4 730.81 s

mance of MGMBS(1) compared with MGMJS again demonstrates that positivity of the bandwidth ω is useful to accelerating 
the convergence of MGM and improving the efficiency.

Example 4. Consider two-dimensional SFDE with

u(x, y, t) = exp(−t)x2(1 − x)2(2 − x)2 y2(1 − y)2(2 − y)2, d+(x, y, t) = exp
(

sin2(20y) + αx
)

,

d−(x, y, t) = exp
(

sin2(20y) + α(2 − x)
)

, e+(x, y, t) = exp
(

sin2(20x) + β y
)

,

e−(x, y, t) = exp
(

sin2(20x) + β(2 − y)
)

, �̄ = ([0,2] × [0,2]) \ ((1,2) × (1,2)), T = 1.

For Example 4, we extend the banded preconditioner proposed in [9] to solving the SFDE on L-shape domain. Let

A(c) = IM̈ + ηx

[
D+B̂(c)

α,M + D−
(

B̂(c)
α,M

)T
]

+ ηy

[
E+B̌(c)

β,M + E−
(

B̌(c)
β,M

)T
]

,

B̂(c)
α,M =

[
IM ⊗ G(c)

α,Ṁ
O

O IM̄ ⊗ G(c)
α,M

]
, B̌(c)

β,M =
⎡
⎣ G(c,l,u)

β,Ṁ
⊗ IṀ G(c,r,u)

β,Ṁ
⊗ ĨM

G(c,l,d)

β,Ṁ
⊗ ĨT

M G(c,r,d)

β,Ṁ
⊗ IM

⎤
⎦ ,

where G(c)
α,Ṁ

and G(c)
α,M are diagonal-compensated banded truncations of Gα,Ṁ and Gα,M , respectively [9], bandwidths of 

G(c)
α,Ṁ

and G(c,l,u)

α,Ṁ
are 2l and l, respectively, G(c,l,u)

β,Ṁ
∈ R

M×M , G(c,r,u)

β,Ṁ
∈ R

M×M̄ , G(c,l,d)

β,Ṁ
∈ R

M̄×M and G(c,r,d)

β,Ṁ
∈ R

M̄×M̄ denote the 

partitions of G(c)
β,Ṁ

such that

G(c)
β,Ṁ

=
⎡
⎣ G(c,l,u)

β,Ṁ
G(c,r,u)

β,Ṁ

G(c,l,d)

β,Ṁ
G(c,r,d)

β,Ṁ

⎤
⎦ ,

provided that G(c)
β,Ṁ

is a diagonal-compensated banded truncation of Gβ,Ṁ [9] and bandwidth of G(c)
β,Ṁ

is 2l. Here, 
l = log2(M + 1). Then, we obtain a banded preconditioner Pb = LbUb such that LbUb is the incomplete LU factorization 
with no fill-in (ILU(0)) of A(c) . We solve Example 4 by GMRES with the extended banded preconditioner Pb , MGMBS(1) and 
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Table 9
Results of MGMBS(1), MGMJS and Pb when N = 23 and the scheme (4.5) is used.

(α,β) Ṁ + 1 MGMBS(1) MGMJS Pb

iter CPU EN,M iter CPU EN,M iter CPU EN,M

(1.1,1.5) 27 12.0 2.34 s 2.18e−2 33.4 6.50 s 2.18e−2 46.1 5.03 s 2.18e−2
28 14.1 7.77 s 1.08e−2 46.6 24.31 s 1.08e−2 91.1 47.96 s 1.08e−2
29 17.1 49.79 s 5.11e−3 66.0 188.75 s 5.11e−3 181.1 1249.32 s 5.11e−3

(1.5,1.5) 27 7.0 1.40 s 1.08e−2 12.0 2.71 s 1.08e−2 43.0 4.74 s 1.08e−2
28 7.0 3.98 s 5.38e−3 10.0 5.76 s 5.38e−3 78.0 39.35 s 5.38e−3
29 8.0 25.51 s 2.72e−3 10.0 30.37 s 2.72e−3 147.0 861.63 s 3.42e−4

(1.6,1.9) 27 8.0 1.58 s 8.00e−3 48.0 9.36 s 8.00e−3 65.0 8.29 s 8.00e−3
28 8.0 4.52 s 3.92e−3 – – – 123.1 78.98 s 3.92e−3
29 8.0 25.50 s 1.95e−3 – – – 237.1 2061.80 s 1.95e−3

Table 10
Results of MGMBS(1), MGMJS and Pb when N = 23 and the scheme (4.7) is used.

(α,β) Ṁ + 1 MGMBS(1) MGMJS Pb

iter CPU EN,M iter CPU EN,M iter CPU EN,M

(1.6,1.6) 27 5.0 1.02 s 2.09e−3 8.0 1.66 s 2.09e−3 41.0 4.30 s 2.09e−3
28 5.0 2.92 s 6.64e−4 9.0 4.80 s 6.64e−4 77.0 36.69 s 6.64e−4
29 5.0 16.91 s 3.42e−4 11.0 35.49 s 3.42e−4 147.0 854.85 s 3.42e−4

(1.75,1.75) 27 6.0 1.23 s 1.84e−3 9.0 2.18 s 1.84e−3 52.0 6.15 s 1.84e−3
28 6.0 3.46 s 5.48e−4 12.0 8.21 s 5.48e−4 98.0 56.89 s 5.48e−4
29 6.0 19.99 s 2.43e−4 18.0 48.14 s 2.43e−4 189.9 1379.79 s 2.43e−4

(1.9,1.9) 27 8.0 1.64 s 1.51e−3 17.0 3.09 s 1.51e−3 65.0 8.29 s 1.51e−3
28 8.0 4.64 s 4.36e−4 18.0 9.18 s 4.36e−4 126.0 82.14 s 4.36e−4
29 8.0 25.68 s 1.75e−4 44.0 127.70 s 1.75e−4 248.0 2244.46 s 1.75e−4
210 9.0 157.96 s 1.18e−4 – – – 660.9 30207.37 s 1.18e−4

MGMJS with ν = 2. The corresponding results are listed in Table 9 for the first-order discretization scheme (4.5) and in 
Table 10 for the second-order discretization scheme (4.7).

‘−’ denotes divergence of solver. Note that from Tables 9–10, EN,M of different solvers are always the same and small 
except for some cases of divergence, which suggests that the uniform-grid discretization of SFDE on L-shape domain, (2.9) is 
actually applicable. Also, iteration number and CPU cost of MGMBS(1) are much smaller than the other two solvers, which 
means MGMBS(1) is the most efficient one among the three solvers for solving the SFDE on L-shape domain. Moreover, we
note that MGMJS diverges for the case of both (α, β) = (1.6, 1.9) and (α, β) = (1.9, 1.9) when M is large. That means the 
positivity of bandwidth ω can not only accelerate the convergence of MGM but also remedy the situation where MGMJS is 
not even applicable.

5.1. MGMBS for SFDE on U-shape domain

In this subsection, we extend the proposed MGM to solving SFDE on a U-shape domain which results from an SFDE on 
a rectangular domain. Consider the SFDE on rectangular domain with

u(x, y, t) =

⎧⎪⎨
⎪⎩

exp(−t)

(
3∏

k=0
(x − k)2

)(
2∏

k=0
(y − k)2

)
, (x, y, t) ∈ �̄U × [0, T ],

0, (x, y, t) ∈ �̄S × [0, T ],
(5.2)

� = (0,3) × (0,2), T = 1, d+(x, y) = d−(x, y) = exp(sin2(20y) + sin2 x), (x, y) ∈ �,

e+(x, y) = exp(sin2(20x) + 2 sin2 y), e−(x, y) = exp(sin2(20x) + 3 sin2(2y)), (x, y) ∈ �,

where �̄S = [1, 2] × [1, 2], �̄U = � \ �̄S is a U-shape domain. We assume that values of the solution u(x, y, t) on the 
domain (x, y, t) ∈ �̄S × [0, T ] are already known while values of the solution u(x, y, t) on the domain (x, y, t) ∈ �U × [0, T ]
are unknowns to be solved, where �U denotes the interior of �̄U . Then, the SFDE problem on the rectangular domain � is 
transformed into an SFDE on the U-shape domain �̄U such that

∂u(x, y, t)

∂t
= d+(x, y, t)0 Dα

x u(x, y, t) + d−(x, y, t) x Dα
3 u(x, y, t) + e+(x, y, t) 0 Dβ

y u(x, y, t)+
e−(x, y, t) y Dβ u(x, y, t) + f (x, y, t), (x, y, t) ∈ �U × (0, T ], (5.3)
d(x)
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u(x, y, t) = 0, (x, y, t) ∈ ∂�U × (0, T ], (5.4)

u(x, y,0) = x2(x − 1)2(x − 2)2(x − 3)2 y2(1 − y)2(2 − y)2, (x, y) ∈ �̄U , (5.5)

where ∂�U denotes the boundary of �̄U , f is determined by (5.2),

d(x) =
{

2, x ∈ (0,1) ∪ (2,3),

1, x ∈ [1,2].
The rest of this subsection is devoted to (i) showing structure of the coefficient matrices resulting from uniform-grid dis-
cretization of the SFDE on U-shape domain, (5.3)–(5.5); (ii) demonstrating how to apply the proposed MGM to solving the 
corresponding linear systems.

Let N and M be positive integers. Denote by τ = T /N and h = 1/(M +1), the temporal-step size and the spatial-step size, 
respectively. Define the temporal girds, spatial grids in x-direction and spatial grids in y-direction by {tn = nτ |0 ≤ n ≤ N}, 
{xi = ih|0 ≤ i ≤ Ṁx + 1} and {y j = jh|0 ≤ j ≤ Ṁ y + 1}, respectively, where Ṁx = 3M + 2 and Ṁ y = 2M + 1. Then, the vectors 
consisting of spatial-grid points with x-dominant ordering and y-dominant ordering are respectively defined by

PU ,x,M =
(
Vx,M,d,Vx,M,u

)T ∈ T
M̈×1 and PU ,y,M =

(
Vy,M,l,Vy,M,m,Vy,M,r

)T ∈ T
M̈×1, (5.6)

where M̈ = M(Ṁx + Ṁ y + 1),

Vx,M,d =
(
{Pi1}Ṁx

i=1, {Pi2}Ṁx
i=1, ..., {PiM}Ṁx

i=1

)
∈ T

1×Ṁx M ,

Vx,M,u =
(
{ P̃ i,M+1}2M

i=1, { P̃ i,M+2}2M
i=1, ..., { P̃ i,Ṁ y

}2M
i=1

)
∈ T

1×(Ṁ y+1)M ,

Vy,M,l =
(
{P1 j}Ṁ y

j=1, {P2 j}Ṁ y

j=1, ..., {P M j}Ṁ y

j=1

)
∈ T

1×Ṁ y M ,

Vy,M,m =
(
{P M+1, j}M

j=1, {P M+2, j}M
j=1, ..., {P2M+2, j}M

j=1

)
∈ T

1×(M+2)M ,

Vy,M,r =
(
{P2M+3, j}Ṁ y

j=1, {P2M+4, j}Ṁ y

j=1, ..., {P Ṁx, j}Ṁ y

j=1

)
∈ T

1×Ṁ y M ,

P̃ i j =
{

Pij, 1 ≤ i ≤ M,

Pi+M+2, j, M + 1 ≤ i ≤ 2M,
M + 1 ≤ j ≤ Ṁ y,

Pij denotes the point (xi, y j) for 0 ≤ i ≤ Ṁx + 1, 0 ≤ j ≤ Ṁ y + 1, respectively.
By (2.3)–(2.4) and forward difference approximation of ∂u

∂t , we obtain an implicit finite difference discretization of the 
SFDE on the U-shape domain �̄U as follows

τ−1(un+1 − un) = − (h−αBx + h−βBy
)

un+1 + fn+1, 0 ≤ n ≤ N − 1, (5.7)

where un = u(PU ,x,M , tn), fn = f (PU ,x,M , tn),

Bx = D+B̂U,α,M + D−B̂T
U,α,M , By = E+B̌U,β,M + E−B̌T

U,β,M ,

D± = diag(d±(PU ,x,M)), E± = diag(e±(PU ,x,M)),

B̌U,β,M =
⎡
⎣ G(l,u)

β,Ṁ y
⊗ IṀx

G(r,u)

β,Ṁ y
⊗ ÎM

G(l,d)

β,Ṁ y
⊗ ÎT

M G(r,d)

β,Ṁ y
⊗ I2M

⎤
⎦ , ÎT

M =
[

IM OM×M̄x
OM×M

OM×M OM×M̄x
IM

]
,

B̂U,α,M = blockdiag(IM ⊗ Gα,Ṁx
, IM+1 ⊗ G�

α,Ṁx
),

provided that G(l,u)

β,Ṁ y
∈ R

M×M , G(r,u)

β,Ṁ y
∈R

M×M̄ y , G(l,d)

β,Ṁ y
∈R

M̄ y×M , G(r,d)

β,Ṁ y
∈ R

M̄ y×M̄ y are partitions of Gβ,Ṁ y
such that

Gβ,Ṁ y
=
⎡
⎣ G(l,u)

β,Ṁ y
G(r,u)

β,Ṁ y

G(l,d)

β,Ṁ y
G(l,u)

β,Ṁ y

⎤
⎦ ,

G�

α,Ṁx
∈ R

M̄x×M̄x derives from deleting the median M̄x columns and the median M̄x rows of Gα,Ṁx
. Here, M̄x = Ṁx − 2M

and M̄ y = Ṁ y − M .
Similar to the discussion in Section 3, the resulting task from (5.7) is to solve

Au = b, (5.8)
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where b ∈R
M̈×1 denotes some given right hand sides, u is the unknown vector to be solved,

A = IM̈ + ηx(D+B̂U,α,M + D−B̂T
U,α,M) + ηy(E+B̌U,β,M + E−B̌T

U,β,M),

with ηx = τh−α and ηy = τh−β . As we see, A in (5.8) is a block matrix with each block being BTL. Thus, matrix-vector 
multiplication of A in (5.8) requires only O(M2 log M) operations and only O(M2) storage.

Now, we consider extending the proposed MGM to solving the linear system (5.8). We only need to redefine the restric-
tion operator, the interpolation operator, the pre-smoothing iteration Si and the post-smoothing iteration S̃i in Algorithm 1. 
Let Mi = 2i − 1 for i ≥ 2 and M = Ml for some l > 2. The corresponding spatial steps are given by hi = 1/(Mi + 1) for 
2 ≤ i ≤ l. Denote Ṁx,i = 3Mi + 2, Ṁ y,i = 2Mi + 1 and M̈i = Mi(Ṁx,i + Ṁ y,i + 1), for i ≥ 2.

We firstly focus on construction of the pre-smoother Si and the post-smoother S̃i . Denote Ai , A in (5.8) with M = Mi . 
Split Ai as Ai = Di − Ri , where Di is banded truncation of Ai with a bandwidth ω. Define the permutation matrices Pi such 
that

PU ,y,Mi = PiPU ,x,Mi , 3 ≤ i ≤ l.

Then, we obtain Ãi = PiAiPT
i . Again, split Ãi as Ãi = D̃i − R̃i , where D̃i is banded truncation of Ãi with bandwidth ω. Then, 

similar to the discussion in Section 3, for a linear system

Aix = y, 3 ≤ i ≤ l,

with a randomly given right hand side y ∈ R
M̈i×1, we obtain two banded splitting iteration schemes as pre-smoother and 

post-smoother such that

xk+1 = Si(xk,y) := xk + D−1
i (y − Aix

k), 3 ≤ i ≤ l, (5.9)

xk+1 = S̃i(xk,y) := xk + PT
i D̃−1

i Pi(y − Aix
k), 3 ≤ i ≤ l. (5.10)

Here, the construction of D̃i requires only O(M2
i ) storage and only O(M2

i ) operations via the relationship Ãi = PiAiPT
i .

Again, we still refer to piecewise linear restriction operator Ii
i+1 and piecewise linear interpolation operator Ii+1

i , which 
on U-shape domain are however defined by

Ii
i+1 =

[
JMi ⊗ Ĵi

J̃i ⊗ J̌i

]
, Ii+1

i =
[

4JT
Mi

⊗ JT
Ṁx,i

J(r,u)
i

J(r,d)
i

]
, 2 ≤ i ≤ l − 1, (5.11)

where JMi and JṀx,i
are given by (3.8),

J̃i = blockdiag(1, JMi ), Ĵi = blockdiag(JMi , J̃i, J̃i), J̌i = blockdiag(JMi , JMi )

J(r,u)
i =

[
O O
J̄T
i O

]
, J̄i =

[
JMi Õi

Õi JMi

]
, J(r,d)

i =
[

2 O1×Mi

eMi+1,1 4JT
Mi

]
⊗ J̌T

i ,

where eMi+1,1 denotes the first column of IMi+1 , Õi = OMi×(Mi+2)Mi+1 , O denotes zero matrix with proper size.
Note that Ai is still a block matrix with each block being BTL for 2 ≤ i ≤ l. Moreover, both the restriction and the 

interpolation operator in (5.11) are still sparse. Thus, similar to the discussion in Section 3, operations cost and storage 
requirement of Algorithm 1 for solving the SFDE on U-shape domain are still of O(M2 log M) and O(M2), respectively. 
Besides, the convergence property of (5.9) and (5.10) can be similarly proved.

In the rest of this subsection, we firstly extend the banded preconditioner proposed in [9] to the linear system (5.8). And 
then, we solve the SFDE (5.3)–(5.5) by using GMRES with the extended banded preconditioner, MGMBS(1) and MGMJS and 
compare the results.

In order to construct the banded preconditioner, we solve the linear system under a permuted ordering such that

Ãũ = b̃, (5.12)

where Ã = Ãl , ũ = Plu, b̃ = Plb. It is easy to see that (5.12) is actually equivalent to (5.8).
For any X ∈R

Ṁx×Ṁx , Y ∈R
Ṁ y×Ṁ y , Z ∈R

M×M , define a mapping FM such that

FM(X,Y,Z) = IM̈ + ηx

[
D+B̂M(X) + D−B̂T

M(X)
]
+ ηy

[
E+B̌M(Y,Z) + E−B̌T

M(Y,Z)
]
,

where

B̂M(X) =
⎡
⎢⎣

X(l,u) ⊗ IṀ y
X(m,u) ⊗ ĪM X(r,u) ⊗ IṀ y

X(l,m) ⊗ ĪT
M X(m,m) ⊗ IM X(r,m) ⊗ ĪT

M
X(l,d) ⊗ IṀ y

X(m,d) ⊗ ĪM X(r,d) ⊗ IṀ y

⎤
⎥⎦ , X =

⎡
⎣ X(l,u) X(m,u) X(r,u)

X(l,m) X(m,m) X(r,m)

X(l,d) X(m,d) X(r,d)

⎤
⎦ ,

X(l,u),X(r,u),X(l,d),X(r,d) ∈ R
M×M , X(m,u),X(m,d) ∈R

M×M̄x , X(l,m),X(r,m) ∈R
M̄x×M ,

X(m,m) ∈ R
M̄x×M̄x , B̌M(Y,Z) = blockdiag(IM ⊗ Y, IM̄x

⊗ Z, IM ⊗ Y).
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Table 11
Results of MGMBS(1), MGMJS and Pb when N = 1 and the scheme (4.5) is used.

(α,β) Ṁ y + 1 MGMBS(1) MGMJS Pb

iter CPU EN,M iter CPU EN,M iter CPU EN,M

(1.1,1.5) 27 22.0 0.80 s 3.09e−2 124.0 3.67 s 3.09e−2 43.0 0.82 s 3.09e−2
28 32.0 3.17 s 1.40e−2 203.0 18.13 s 1.40e−2 69.0 6.36 s 1.40e−2
29 42.0 23.53 s 1.52e−2 276.0 150.30 s 1.52e−2 109.0 118.46 s 1.52e−2

(1.5,1.5) 27 11.0 0.36 s 1.67e−2 33.0 0.97 s 1.67e−2 63.0 1.31 s 1.67e−2
28 12.0 1.25 s 6.37e−3 38.0 3.39 s 6.37e−3 110.0 12.87 s 6.37e−3
29 13.0 8.08 s 9.22e−3 42.0 22.28 s 9.22e−3 194.0 341.24 s 9.22e−3

(1.6,1.9) 27 10.0 0.31 s 3.91e−3 111.0 3.21 s 3.91e−3 75.0 1.73 s 3.91e−3
28 11.0 1.17 s 5.03e−3 – – – 135.0 17.53 s 5.03e−3
29 11.0 6.59 s 6.39e−3 – – – 244.0 498.76 s 6.39e−3

Table 12
Results of MGMBS(1), MGMJS and Pb when N = 1 and the scheme (4.7) is used.

(α,β) Ṁ y + 1 MGMBS(1) MGMJS Pb

iter CPU EN,M iter CPU EN,M iter CPU EN,M

(1.6,1.6) 27 11.0 0.37 s 1.30e−2 29.0 0.85 s 1.30e−2 58.0 1.20 s 1.30e−2
28 12.0 1.18 s 1.22e−2 34.0 2.91 s 1.22e−2 104.0 11.54 s 1.22e−2
29 12.0 7.35 s 1.20e−2 615.0 339.47 s 1.20e−2 186.0 303.58 s 1.20e−2
210 13.0 38.03 s 1.20e−2 – – – ∗ ∗ ∗

(1.75,1.75) 27 9.0 0.31 s 9.56e−3 32.0 0.98 s 9.56e−3 79.0 1.82 s 9.56e−3
28 10.0 1.03 s 8.76e−3 163.0 14.97 s 8.76e−3 147.0 20.36 s 8.76e−3
29 10.0 6.57 s 8.57e−3 – – – 276.0 659.40 s 8.57e−3

(1.9,1.9) 27 9.0 0.28 s 7.41e−3 43.0 1.31 s 7.41e−3 105.0 2.89 s 7.41e−3
28 9.0 0.94 s 6.59e−3 – – – 205.0 35.49 s 6.59e−3
29 9.0 5.43 s 6.40e−3 – – – 430.0 883.24 s 6.40e−3

By straightforward calculation, it is easy to check that Ã = FM(Gα,Ṁx
, Gβ,Ṁ y

, Gβ,M).

Now, we consider constructing banded preconditioner for Ã. Let G(c)
β,M , G(c)

β,Ṁ y
and G(c)

α,Ṁx
be diagonal-compensated banded 

truncations of Gβ,M , Gβ,Ṁ y
and Gα,Ṁx

, respectively [9]. Here, the bandwidths of the G(c)
β,M , G(c)

β,Ṁ y
and G(c)

α,Ṁx
are l, 2l and 

3l, respectively, with l = log2(M + 1). Then, we obtain a banded preconditioner Pb = LbUb such that LbUb is the incomplete 
LU factorization with no fill-in (ILU(0)) of Ã(c) = FM

(
G(c)

α,Ṁx
,G(c)

β,Ṁ y
,G(c)

β,M

)
. The results of Pb , MGMBS(1) and MGMJS with 

ν = 2 for solving (5.3)–(5.5) are listed in Table 11 for the first-order discretization scheme (4.5) and in Table 12 for the 
second-order discretization scheme (4.7).

‘−’ and ‘∗’ denote divergence and running out of memory, respectively. From Tables 11–12, we note that even for the 
smallest N (i.e., N = 1), EN,M are still small, which suggests that (5.7), the uniform-grid discretization of SFDE on U-shape 
domain is actually applicable. Clearly, both CPU cost and iteration number of MGMBS(1) are significantly smaller than 
the other two solvers, which means that MGMBS(1) is far more efficient than the other two solvers for solving the SFDE 
on U-shape domain. Note also that iteration number of MGMJS changes drastically and it even diverges in all cases but 
(α, β) = (1.1, 1.5), (1.5, 1.5) of Tables 11–12 for large Ṁ y . This again implies the positivity of the bandwidth ω is useful to 
not only significantly improving efficiency of MGM but also reversing divergence of MGMJS.

Remark. Note that in Tables 3–12, iteration number of any solver mentioned above always has an evident tendency to 
increase as M increases when α is close to 1 and |α − β| is large; say, the case of (α, β) = (1.1, 1.5). Such a case may lead 
to the SFDE becoming an anisotropic problem, for which the multigrid method usually does not work well; see, for instance, 
[6]. Nevertheless, our proposed V-cycle MGM still has a better numerical performance compared with other solvers.

6. Concluding remarks

In this paper, we have proposed and studied a V-cycle MGM with the proposed banded smoother as a fast solver for 
the linear systems arising from uniform-grid discretization of two-dimensional time-dependent SFDEs on rectangular and 
non-rectangular domains. Complexity analysis shows that one iteration of MGMBS(ω) requires only O(M2 log M) operations 
and O(M2) storage. Theoretically, we prove the convergence of the proposed banded smoother in the sense of infinity norm. 
Moreover, a number of numerical results in Section 5 show that the total operations cost and the total storage requirement 
of MGMBS(1) for recursively solving the N linear systems are of O(N M2 log M) and O(M2), respectively when |α − β| is 
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small. Moreover, via comparing MGMBS(1) with other solvers, it shows that MGMBS(1) is significantly more efficient than 
the other tested solvers. Also, with comparison between MGMBS(1) and MGMJS, it demonstrates that the positivity of ω
is of great importance for MGM to remarkably improve its efficiency for solving SFDE problems and remedy divergence 
of MGMJS. We will consider a rigorous proof of convergence of MGMBS(ω), modifying the performance of our proposed 
method in the possibly anisotropic case (e.g., (α, β) = (1.1, 1.5)) as our future research work.

Acknowledgements

The authors would like to thank the anonymous referees for their useful suggestions and comments that improved the 
presentation of this paper.

References

[1] O. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn. 29 (2002) 145–155.
[2] J. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep. 195 (1990) 

127–293.
[3] W. Briggs, S. McCormick, A Multigrid Tutorial, SIAM, Philadelphia, 1987.
[4] R. Chan, X. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Stat. Comput. 13 (1992) 1218–1235.
[5] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996) 427–482.
[6] W. Hackbusch, Multi-Grid Methods and Applications, Springer Science and Business Media, 2013.
[7] Z. Hao, Z. Sun, W. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys. 281 (2015) 787–805.
[8] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[9] X. Jin, F. Lin, Z. Zhao, Preconditioned iterative methods for two-dimensional space-fractional diffusion equations, Commun. Comput. Phys. 18 (2015) 

469–488.
[10] S. Lei, Y. Huang, Fast algorithms for high-order numerical methods for space-fractional diffusion equations, Int. J. Comput. Math. (2017), 

http://dx.doi.org/10.1080/00207160.2016.1149579, in press.
[11] Q. Liu, F. Liu, Y. Gu, P. Zhuang, J. Chen, I. Turner, A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion 

equation, Appl. Math. Comput. 256 (2015) 930–938.
[12] M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006) 

80–90.
[13] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000) 1–77.
[14] H. Pang, H. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys. 231 (2012) 693–703.
[15] J. Pan, R. Ke, M. Ng, H. Sun, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput. 36 

(2014) A2698–A2719.
[16] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[17] T. Solomon, E. Weeks, H. Swinney, Observation of anomalous diffusion and Lëvy flights in a 2-dimensional rotating flow, Phys. Rev. 71 (1993) 

3975–3979.
[18] E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative, Appl. Numer. Math. 

90 (2015) 22–37.
[19] H. Sun, X. Jin, Q. Chang, Convergence of the multigrid method for ill-conditioned block Toeplitz systems, BIT 41 (2001) 179–190.
[20] W. Tian, H. Zhou, W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84 (2015) 

1703–1727.
[21] U. Trottenberg, C. Oosterlee, A. Schülller, Multigrid, Academic Press, New York, 2001.

http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6167726177616C2D32303032s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib626F7563686175642D31393930s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib626F7563686175642D31393930s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib627269676773776C32303030s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib726368616E31393932s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib726368616E31393936s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6861636B62757363682D32303133s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib7A68616F7A73756E7763616F32303135s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib68696C6665727275646F6C662D32303030s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6A696E787132303135s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6A696E787132303135s1
http://dx.doi.org/10.1080/00207160.2016.1149579
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6C6975716C6975666775797432303135s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6C6975716C6975666775797432303135s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6D6565727363686165727432303036s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6D6565727363686165727432303036s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib6D65747A6C65722D32303030s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib686B70616E6732303132s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib70616E6A32303134s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib70616E6A32303134s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib706F646C75626E7931393939s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib736F6C6F6D6F6E2D31393933s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib736F6C6F6D6F6E2D31393933s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib736F757361656C6963s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib736F757361656C6963s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib73756E687732303031s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib7469616E777932303135s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib7469616E777932303135s1
http://refhub.elsevier.com/S0021-9991(17)30101-8/bib54726F7474656E62657267s1

	A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations
	1 Introduction
	2 Discretized time-dependent two-dimensional SFDEs
	2.1 Discretized SFDE on rectangular domain
	2.2 Discretized SFDE on L-shape domain

	3 Multigrid method
	3.1 The complexity

	4 Convergence analysis
	4.1 Convergence of pre-smoother and post-smoother
	4.2 Veriﬁcation for convergence of TGM

	5 Numerical results
	5.1 MGMBS for SFDE on U-shape domain

	6 Concluding remarks
	Acknowledgements
	References


