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1. Introduction

In this paper, we consider the initial-boundary value problem of the two-dimensional space-fractional diffusion equation
(SFDE):

ou(x, y,t
Ty) =di (%, y.£) (DU, Y. £) +d_(X, ¥.0) xD§, U(X. ¥, 1) + €4 (x, ¥, 1) (DYUR, y.0) +
e—(x,y,t) yDg(x)u(x, y.0+ f(x,y.0), (x,y,t) € Q2% (0,T], (11)
u(x,y,t)=0, (x,y,t) €9Q x (0, T], (12)
u,y,00 =y (x,y), x, ) €, (13)
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Fig. 1. Shapes of Q in different cases.

where a, 8 € (1,2),d+(x, y,t) and e+ (x, y, t) are all nonnegative coefﬁcients over the domain € x (0, T] holding d- +d_ >0

and ey +e_ >0, f(x,y,t) is the source term, ¥ is a glven initial condition, Q = [a, b] x [c, d]) \ ([b b ] x [d d]) 02 denotes
boundary of Q,  denotes interior of €, d>d>c, b>b>aq,

b(y):{l?’ yed, d(x):{‘f’ x€(@,b),

b, yeld,d), d, xelb,b).

Fig. 1(a) shows that € is a rectangular domain in the case of b=bhand d=d. Fig. 1(b) shows that € is an L-shape domain
in the case of b ;éi) and d;éa.

For a function v(x) with compact support on an interval [x;, xg], the left-sided and the right-sided Riemann-Liouville
fractional derivatives of v(x) are defined respectively by
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The SFDE is a class of fractional differential equations which has been widely and successfully used in modeling of
anomalous diffusive systems, unification of diffusion, description of fractional random walk and wave propagation phe-
nomenon in the last few decades [1,2,8,13,16,17]. Since analytical solutions of SFDEs are often inaccessible, many numerical
schemes have been proposed to solve the SFDEs [7,10-12,18,20]. Nevertheless, the fractional differential operators are non-
local, for which discretization schemes tend to generate dense coefficient matrices. Hence, direct solvers like Gaussian
elimination for solving the dense linear systems resulting from discretization of the SFDEs require O (NM®) operations and
O(NM? 4+ M*) storage, provided that N and M? are the numbers of temporal-grid points and spatial-grid points, respec-
tively. Such an expensive complexity motivates us to develop fast algorithms for solving discretized SFDEs.

For uniform-grid discretization of the SFDE on rectangular domain, the associated dense coefficient matrix in each tem-
poral step usually possesses block Toeplitz-like (BTL) structure whose matrix-vector multiplication can be fast computed via
the fast Fourier transformation (FFT) with only O(M? log M) operations and (O(M?) storage. For the BTL linear system, there
are a series of fast solvers proposed to solve it. For example, the generalized minimum residual (GMRES) methods with row
approximation preconditioner in [15] and banded preconditioner in [9] are both efficient ones for solving the BTL linear
systems resulting from uniform-grid discretization of the SFDEs even in the case of oscillating coefficients.

For uniform-grid discretization of the SFDE on non-rectangular domain (e.g., L-shape domain), the associated dense
coefficient matrix in each temporal step is no longer BTL but a block matrix with each block being BTL. A matrix with
such a structure still allows a fast matrix-vector multiplication whose operations cost and storage requirement are still
of O(M?logM) and O(M?), respectively. Although the above mentioned row approximation preconditioner and banded
preconditioner can be extended to solving such linear systems by some variance, the GMRES method with these extended
preconditioners converges more slowly for these non-BTL linear systems than it does for the BTL linear systems.

The main aim of this paper is to study a V-cycle multigrid method for solving the linear systems arising from time-
dependent two-dimensional SFDEs. The main advantage of using multigrid method is to handle SFDEs on non-rectangular
domains and to solve SFDEs with oscillating coefficients more efficiently than the above mentioned solvers. In [14], Pang and
Sun proposed a multigrid method with the damped Jacobi smoother to solve one-dimensional discretized SFDEs. However,
it keeps uncertain if their method can be extended to handle the two-dimensional SFDEs, specially to the non-rectangular
domains. In this paper, we propose a V-cycle multigrid method with banded splitting iteration schemes to solve the two-
dimensional SFDEs in non-rectangular domains. To our knowledge, although multigrid methods for solving integer-order
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partial differential equations on non-rectangle domains have been thoroughly investigated (see, for instance, [21]), the coun-
terpart for SFDEs with non-constant coefficients has never been studied before. In the proposed V-cycle multigrid method,
the pre-smoothing iteration takes a banded splitting of the coefficient matrix under x-dominant ordering, while y-dominant
ordering for the post-smoother. Thus, in each pre-smoothing iteration, it requires to solve a banded linear system while
in each post-smoothing iteration, it requires to solve a permuted banded linear system. That means, the operations cost
and the storage requirement of each pre- or post-smoothing iteration are of @(M?log M) and O(M?), respectively, which
are actually dominated by operations cost and storage requirement of one matrix-vector multiplication of the coefficient
matrix. Theoretically, we show the convergence of the proposed two banded splitting iteration schemes in the sense of
infinity norm. Results of numerical experiments for time-dependent two-dimensional SFDEs on rectangular, L-shape and
U-shape domains are reported to demonstrate that both computational time and iteration number required by the proposed
multigrid method are significantly smaller than those of the other tested methods.

The rest of this paper is organized as follows. In Section 2, we study coefficient matrices arising from the uniform-grid
discretizations of time-dependent two-dimensional SFDEs on rectangular and non-rectangular domains. In Section 3, we
present a multigrid method using the proposed banded smoother for solving the linear systems deriving from Section 2. In
Section 4, we prove the convergence of the proposed two banded splitting iteration schemes. In Section 5, numerical results
are reported to show the effectiveness of the proposed multigrid method. Finally, some concluding remarks are given in
Section 6.

2. Discretized time-dependent two-dimensional SFDEs
2.1. Discretized SFDE on rectangular domain

In this subsection, we discuss the discrete form of the SFDE (1.1)-(1.3) on rectangular domain (i.e., b=bhandd= d).

Let N and M be positive integers. Denote by T = T/N, hy = (b-— a)/(M+1) and hy = d- ¢)/(M + 1), the temporal step,
spatial step in x direction and spatial step in y direction, respectively. Define the temporal girds, spatial grids in x-direction
and spatial grids in y-direction, by {t; =n7|0 <n <N}, {xj =a+ihx|0 <i <M + 1} and {yj =c+ jhy|l0 < j <M + 1},
respectively. Then, the vectors consisting of spatial-grid points with x-dominant ordering and y-dominant ordering are
defined respectively by

2
Pram =(P11, P21, ..., Pu1, P12, P22, ooy Pr2, ooy Pty Pats oo, o)™ € TMXT (21)
_ 2
Pr.y.m =(P11, P12, ..., P1m, P21, P22, ..oy PaM, oovoess Pty Priz, ooy Prang)™ € TM XD, (2.2)

where T™*" denotes the set of all m x n matrices with entries belonging to the two-dimensional Euclidean space, Pj;
denotes the point (x;, y;) for 0<i, j <M + 1.

Let v(z) be a smooth function with compact support on € [z, zg]. Let ¥ € (1, 2). For simplicity, we assume the approxi-
mation of the fractional derivatives ZLDZv(z) and ZDZRV(Z) to be following shifted numerical-integration formulas

i+1

i 1 . .
W DX V@ g ein ~ Vo= = g v+ ). 1<i<K, (2.3)
j=1
1 K
DY V(@D oz i V= 7 ‘Z] gl v +ih), 1<i<K, (2.4)
j=i—

where h = (zgp — z1)/(K + 1), g}”(o < i< K) are real numbers varying from different discretization schemes. Actually,
there are a series of discretization schemes fitting in the forms of (2.3) and (2.4); see for instance [12,18,20]. Denote
Vi= (i1, V12, ... V2 )T, V= (v1, V2, ..., vk)T. Then, matrical forms of (2.3) and (2.4) are

1 - 1
vy = _h_yGV’KV and v_= _h_)/GV’KV’

respectively, provided that G k is a Toeplitz matrix [5] with its first column and its first row being

(giy)’ ggy)’ _“’g;g/))T e R¥*1 and (ggy)’ g(()y)’ 0,..,0) € RlxK,

respectively, where R™*" denotes the set of all m x n real matrices. Since Gy x is a Toeplitz matrix, its matrix-vector
multiplication can be fast computed via using FFT with only O(K) storage and only O(K log K) operations [5]. Moreover,
the forward difference is used to approximate the temporal derivative ‘;—‘t‘ throughout this paper. Then, we obtain an implicit
finite difference discretization of the SFDE (1.1)-(1.3) on the uniform grids, &% x M, in the case of € being a rectangle as
follows
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o (0 - u) = — (B BT )t T 0snsN -1, (2.5)
where u" = u(Pr xm, tn), ' = f(Prx.M, tn),

By, =Dy, (In ®Ge.m) +DY_(y ®Gh ). DYy = diag(ds (P tn)).

By, =Ey’ (Gom ®Im) +EG (G ®@Iy),  Ef)y = diages(Fxu. tn)).

I, denotes k x k identity matrix, “®” denotes the Kronecker product.
The resulting task from (2.5) is to recursively solve

(le + By + nyBg{;”) utl =u' 4+ of", 0<n<N-1, (2.6)

where ny = thy%, ny = rh;ﬂ. Since the coefficient matrices in (2.6) are all BTL, their matrix-vector multiplications can
be fast computed with only ©(M?) storage and only O(M? log M) operations by utilizing FFT and properties of Kronecker
product.

2.2. Discretized SFDE on L-shape domain

In this subsection, we discuss the discrete form of the SFDE (1.1)-(1.3) on L-shape domain (i.e., B#B and d;é d). For
simplicity, we assume b —a =b—-bandd—c=d—d throughout the rest of this paper. This subsection actually gives an
insight into the structure of coefficient matrices of the discretized SFDE on L-shape domain, which is quite different from
the classical BTL one resulting from the uniform-grid discretization of the SFDEs on rectangular domain.

Let N and M be positive integers. Denote by T =T /N, hy = (B —a)/(M+1) and hy = (El —c)/(M+ 1), the temporal step,
spatial step in x-direction and spatial step in y-direction, respectively. The corresponding spatial-grid points in x-direction
and spatial-grid points in y-direction are defined by {x; =a + ihy|0 <i <M + 1} and {yj=c+jhyl0o<j< M + 1}, respec-
tively, where M +1 = 2(M + 1). Also, the vectors consisting of spatial-grid points with x-dominant ordering and y-dominant
ordering are respectively defined by

Prom =PIy P} o { Py} ) € T, (2.7)
Prym =Pl (P} 20 o (i) ) € TV, (28)

where Pj; denotes the point (x;, y;) for 0 <i, j < M + 1, respectively, M = 2MM — M2,

oM 1=isM,
"TM, M<i<Mm.

By (2.3)-(2.4) and forward difference approximation of 2% we obtain an implicit finite difference discretization of the

SFDE (1.1)-(1.3) on the uniform grids, Z| x u, in the case of Q being an L-shape domain as follows

! -y = — (h;“B{’fj” - h;ﬁBYj”) L 0<n<N-1, (2.9)
where u" = u(gL,X,Mv tw), ' = f(‘@L,X,Ms th),

B{", =D{", By y +D{" B ). D", = diag(d+(PLxu. tn)),

B(Ln)y = E(L’?iuﬁﬂ»M + Eg})—E;TS,M’ Ein)i =diag(e+(ZLx.M. tn)),

(Lu) X ru) oy
ﬁaM:[IM(@Ga,M e } By = Gﬁ,%’@{y GE;I‘%@lM ’
i ® Ga,m Gﬂ,M®IM Gﬂ,M ® Iy

Iv=1[Iy Oy, 51", M=M—M, Opyx, denotes m x n zero matrix, Gg“M) e RMxM, Gg;[) e RMxM Ggf\/)’ € RM*M and Gg;\iﬂ) €

RM*M denote the partitions of the matrix Gg yy such that

(Lu) (r,u)
G — | Cem Som
B.M — G(Ld_) G(raf.j)
B.M B.M

(2.10)

The resulting task from (2.9) is to recursively solve

(1ig + Bl + B Y ut T =u o, 0<n<N -1, (211)
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where ny =th;%, ny = rh;ﬁ. Note that the coefficient matrices in (2.11) are all block matrices with each block being BTL.

Thus, matrix-vector multiplications of coefficient matrices in (2.11) can also be fast computed with only ((M?) storage and
only O(M?2log M) operations.

3. Multigrid method

In this section, we propose a multigrid method (MGM) with two banded splitting iteration schemes as pre-smoother
and post-smoother to solve the linear systems in (2.6) and (2.11). For convenience of statement, linear systems in (2.6) and
(2.11) can be respectively simplified as

ARUR =bR, (3-1)
Apu; =bg, (3.2)

where bg and b; denote some given right hand sides resulting from (2.6) and (2.11), respectively,
Ag = Iy + nxBrx +7yBg y, AL =T +nxBLx +1yBLy,

B« and Bg , denote B(") and B(") in (2.6) for some n, respectively, B, y and By, denote B("> and B(") in (2.11) for some n,
respectively. For 51mpllc1ty, in the rest of this section, we use A to denote Ag or A;. And we also use

Au=bh, (3.3)

to denote the linear system (3.1) or (3.2).

Define a sequence of spatial-grids sizes such that M; =2/ —1, 2 <i <I. Let M = M; for some | > 2. The corresponding
x-direction spatial step and y-direction spatial step are given by hy; = = a)/(Mj+1) and hy,,- =d- ¢)/(M;j+ 1), respec-
tively, for 2 <i <. Let A; denote A with M = M; for 2 <i <. For convenience, we assume A; is of size K; x K; for 2 <i <L
Denote by .¥; and 5”,, the pre-smoothing iteration and the post-smoothing iteration at ith grid, respectively, for 3 <i <L
Moreover, denote by If ; € R¥i*Ki+1 and I't! € RKi+1<Ki the restriction operator and the interpolation operator between ith
and (i + 1)th grids. Then one iteration of V-cycle MGM for solving (3.3) is given by

Algorithm 1 One iteration of V-cycle MGM.

Set: f1 =b;
function u" =MGM(i, ug, f", v)
if i ==2 then
=A'f"
return u";
else
iterate u" = .Z;(u", 1) v times with initial guess ug; %pre-smoothing iteration
e_MGM(z 1,0,171(f" — A;u"), v); % 0 denotes zero initial guess
u' =u" +1_ e;%correction

iterate u" = 5/“,(uh t*') v times; %post-smoothing iteration
return u;

end if

end

Of particular interest in this paper is to propose two banded splitting iteration schemes as .% and .%. Denote A; =

[a%?]f"kz] for 3 <i < Split A; as A; =D; —R; for 3 <i <1, where the banded matrix D; = [dﬁ'k)]j(‘k 1 with bandwidth w is

the banded truncation of A; such that

a), li-k <o,
0.

d) = :
lj—k|l>w

jk
Here, the bandwidth w is a sufficiently small positive constant integer. Then, for a linear system
Aix=y, (34)
with a randomly given right hand side y € RXi*1 one possible splitting is that
Dix=R;x+Yy,
which induces a banded iteration scheme for (3.4) as pre-smoother .#; such that
X = 76 y) =D Rx“ +y) =x + D1y~ Ax), 3<i<l, (3.5)

with an initial guess x¥.
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From (2.6) and (2.11), we note that the discretization of both D% and XDg‘(y) are localized in the block diagonal of A;.

Thus, the banded matrix D; characterizes the x-direction fractional derivatives, ;D¢ and XD‘,;‘(y) well. However, the discretiza-

tion of both CDﬁ and yDg(x) are dispersedly distributed in A;, for which the banded matrix D; is insufficient to characterize.
In order to remedy this situation, in the following, we introduce another banded iteration scheme as i
We study the linear systems (3.3) under a permuted ordering. Define permutation matrices Pg; and Py ; such that
PR,y M; =PRi R x,M; PLyM; =PLiZPLx M, 3<i<l

Also, we use P; to denote Pg; or P ;. Then, it is easy to see that P; is just a matrix transforming vectors from x-dominant
ordering to y-dominant ordering. Let A; = P;A;P]. Denote A; = [&5’,2]5“’,(:1. Similarly, split A; as A =D; — R; for 3 <i </,
where the banded matrix D; = [Ei;.l}() j,("k:1 with bandwidth o is the banded truncation of A; such that
2o _ |ag. -k,
o, |j—kl> .
Since A; is the coefficient matrix of the discretized SFDE under the y-dominant ordering, similar to the discussion above, D;
characterizes the discretization of both CD? and yDg(x) well. On the other hand, linear system (3.4) is actually equivalent to
Ax=y, 3<izl,
with X = P;X, ¥ = P;y. Then, we obtain another splitting as follows
f),-i(:liif(+37, 3<i<l,
which induces another banded splitting iteration scheme for (3.4) as post-smoother % such that
K+ = F(xk, y) := PTD; ! (R,-P,-x" 4 Piy) =P'D; ' (D; — ApPix* + PID; 'Piy
=x“+P[D; 'Pi(y — P[AP;x")
=x*+PID; 'Pi(y - Ax"), 3<i<l, (3.6)
with an initial guess x¥. Here, the construction of D; requires only O(wK;) operations and only O(wK;) storage through the
relationship A;j = P,~A,~PiT for 3 <i <, which is proportional to the number of unknowns in (3.4).

Remark. The positivity of the bandwidth w is of great importance. Actually, if @ = 0, then both .#; and 7 are exactly
the classical Jacobi iteration. It is well known that MGM with Jacobi smoother usually converges very slowly or sometimes
even diverges, which is also shown in numerical experiments in Section 5. What makes a difference is that when w > 0,
the performance of MGM using the proposed banded smoother is significantly better than that of the MGM with the Jacobi
smoother.

For the choice of restriction operator and interpolation operator, we refer to the typical piecewise linear restriction and

piecewise linear interpolation. On the rectangular domain, the restriction RI}Jrl and the interpolation Rl§+l are defined by
R =Jw ®Jv;, U =4GIL, )T, 2<i<I-1, (37)
provided that for any positive integer k,
1 2 1
1 1 2 1
Y=~ c ka(zk-q—l)' (3.8)
4
1 2 1

On the L-shape domain, the restriction Ll;: 41 and the interpolation Ll::“ are defined by

T T (r,u)
- i| , LIH'l = 4JMi ®JM1‘+1 Ji J
Ji ®Im; ! Jlfr' )

where ji = blockdiag(Jum;, 1, Jum;), Ji= blockdiag(1, Jum,),

(r.d) 2 Oy, ] T W [ 00 } < [ I }
A = [ ,, A =1 - R ;= i ,
J [ €Mitq.1 4JlTwi LA Ji O U O(M; 1 +1)xM;

where ey, 1 denotes the first column of Iy, ,, O denotes a zero matrix with proper size.

i+1 —

X |:JMi®Ji } 2<i<l—1, (3.9)
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With components defined above, we furthermore define MGM(v) iteration for solving the linear system (3.3) as follows:

Algorithm 2 MGM(v) iteration.

Set: ro =b;
do

u, = MGM(l, wg_q,b, v); %k > 1, ug is an initial guess
ry =y — Auy; %compute current residual
until % <1077 %stopping criterion

3.1. The complexity

We consider estimation of the complexity of Algorithm 1. Denote by 7 (M) and R(M), storage and operations required
by Algorithm 1, respectively. Let J; and R;(v) denote the storage and the operations required by Algorithm 1 at ith grid,
respectively, for 2 <i <I. Throughout the rest of this subsection, we denote by c, some positive constant independent of v,
Mi2<i<l) and L

For banded matrices, it is well known that the matrix-vector multiplications Di’]x and ﬁi’]x can be fast computed with
O(w?K;) operations and O(wK;) storage via LU factorization for a randomly given vector X. Moreover, since A; has the
same structure as A, it is BTL on rectangular domain while it is a block matrix with each block being BTL on L-shape
domain. Thus, matrix-vector multiplication of A; requires only O(K;logK;) operations and only O(K;) storage. Also, the
permutation transformations in (3.6) require only O(K;) trivial read-write operations and only O(K;) storage. Moreover, by
(2.1) and (2.7), we see that Kj is actually of O(Miz). Hence, we conclude that one iteration of both (3.5) and (3.6) require

only O (Ml2 log M,-) operations and only O (M,Z) storage. Also, since the restriction l§+1 and the interpolation l;:“ defined in

both (3.7) and (3.9) are sparse matrices with O(Miz) non-zero elements, the operations cost and the storage requirement at
ith grid are dominated by those of smoothing iteration at ith grid in Algorithm 1 when i > 2. Note also that we solve the
linear system at the coarsest grid directly. Hence, we conclude that

Jo<cM3, Ra(v) <cM5, Ji<cM?, Ri(v) <cvMilogM;, 3<i<l (3.10)
In addition, by nothing it holds that
‘ 24 1) M M
Mj=2 —1 <" 5 ) _ ‘2+1<-.-<2,—fi. (3.11)

As a result, (3.11) and (3.10) induce that
I ! I
1
4 2 2 2
JM)=Y"Ji<cMj+cY M} <cM Z‘m =O(M?),
i=2 i=3 i=2
I I I
R(M) = Z Ri(v) < cMg3 +cv ZMIZ log M; < cvM? log M Z
i=2 i=3 i=2

_ 2
220 = O(WM*logM).

Hence, we conclude that storage requirement and the operations cost of Algorithm 1 are of O (Mz) and O(M? log M) for
fixed v, respectively.

4. Convergence analysis

In this section, we firstly prove the convergence property of the pre-smoothing iteration (3.5) and the post-smoothing
iteration (3.6). And then, we numerically verify the convergence of the two-grid method (TGM) associated with the MGM
proposed in the previous section.

4.1. Convergence of pre-smoother and post-smoother

Denote by S; = Dl_lR, and §; = Ple)l_lfllP,, the iteration matrix of (3.5) and the iteration matrix of (3.6) for [ > 3, respec-
tively.

Definition 1. A matrix C= [c,-j]'i“j:1 € R™™M s called diagonally dominant (DD), if it satisfies
m
il = Y lel.  1<i<m.
j=1

j#i
If the m inequalities are all strict, then C is called strictly diagonally dominant (SDD).
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Lemma 1. For a DD Toeplitz matrix W € R™*™, WT is also DD.

Proof. Denote W = [w,-j]?_”j:]. Since W is Toeplitz matrix, its entries can be written as
Zi_j = wijj, i,je{l,2..,m}.
For any jo € {1,2,...,m}, take ip=m+ 1 — jo. Then, wj, j, = zo = Wj, i, and
Wijo = Zi—jo = Zig—(m+1—i) = Wigm+1—i» 1=<i=<m. (41)

(4.1) implies that for any jp € {1, 2, ..., m}, there exists ip € {1, 2, ..., m} such that

m m

Wigjol = D Wijgl = [Wigigl = Y [Wigjl- (4.2)
i=1 =1
i%jo J#io

Since W is DD, (4.2) induces that for any j {1, 2,...,m}

m
(wijl = Y [wyj| > 0.

i=1

i#j

That's to say WT is DD. O

Theorem 2. Assume that both Gy  and Gg k are DD with positive diagonal entries (DDPDE) for any K > 0. Then,

ISille <1, [ISilloo <1,  VI>3.

Proof. Let Ag; and A;; denote Ag in (3.1) and A; in (3.2) with M = M, respectively. Then,
A =Ty +0xBrx i + 1y Bryt.  Avp =1 + 0xBrxi+1y,Bry,,
where M; =3M2Z +2My, 1y = the ' nyi= rh;”?

Br.x! =D 4.1 (Iv; ® Gar.m) + Dr.—1 (I, ® Gy )
Br.y1 =Eg 11(Gpm ®m;) +Er — 1(G py, ® ),
By x1= DL,+,l|§a,M, + DL,—,Ié;M’v Bry= EL,+,II§ﬁ,M, + EL,_,zléE,Ml,

Dr i), Ep+r Dpiy and Epi; denote diag(d+(Pram;,tn)), diage+(FPrxm;,tn)), diag(d+(PLxm;.ta)) and
diag(e+(ZL x,m;» tn)) for some n, respectively. Note that both Gy x and Gg are DDPDE and Toeplitz matrices for any
K > 0. By Lemma 1, both GZ{’K and G;,K are also DDPDE. Note also that d+ >0, e+ >0,d+ +d_ >0 and e +e_ > 0. Thus,
we conclude that both Ag; and A;; are DDPDE. Recall that we use A; to denote Ag; and Ay ;. That's to say, A; is DDPDE.
Since Dy is in addition a banded truncation of A;, D; is also DDPDE, which guarantees the invertibility of D.

Recall that we assume A; is of size K; x K;. Let C™" denote the set of all m x n complex matrices. For a vector
X = (X1,X2, ..., Xk,)T € CK¥1 with |X]lee = 1, let ¥ = (y1,¥2, ..., yk,)T = Six. Then, Rx = Djy. Let |ym| = [yl for some
m e {1, 2, ..., K;}. Recall that the banded matrix D; = [clj.’,z];f’kzl has a bandwidth w and A; = D; — R;. On the other hand, let
B, denote Bg x| or B, x; and let B, ; denote Bg y; or B y ;. Then, A; can be written as A; = I, + 1xBx + 17y,/By . Denote

1K K DK L

R = [r;,:]j,’k:r By = [b;’,(< )]j,’k:l and By ; = [bj{ >]j.’k:1. Then, Dy = Rjx implies
K
I 1 1 1 1
|Vl | dim — > A | <[> a0 =] Y rhxl< > il (43)
1<k<K;,0<|k—m|<w k=1 1<k<Kj,lk—m|>w 1<k<Kj,lk—m|>w
1 | N )

Note that r§.,3 = ”x,lb?fc ) 4 ny,,bﬁ’ ) for |j — k| > w and

14 nb$i” 0y b 30, =k,
0 y i .
djp = 1 nub” + 0y b0, 0<li—k<o,
0, lj —k| > w.
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Hence, by (4.3) and the fact that By, and B, ; are both DDPDE,

>

1<k<K;,|k—m|>w
(x,D) .h
1+ nxibmm + ny,lbmm -
1<k<K;,0<|k—m|<w

D w.h
nx’lbmk + 77}’slbmk

(x.D) .h
n"’lbmk + 77J/slbmk

ISiXlloo = 1Ym| <
1 N
Nx, lb;’:k) + ny,lbgk )

>

1<k<K;,|k—m|>w

=
1+ >

1<k<K,|k—m|>w

XD ) (44)
Nx, lbmk + Ny, lbmlé

Since x is an arbitrary vector on the unit sphere, (4.4) actually induces

[Silc = max [ISX[lc <1,  VI>3.
lIX]loo=1
Since A = P,A,PIT is the coefficient matrix under y-dominant ordering of grid points, A; has similar structure to A;. Hence,
it similarly holds that ||D; 'Ryl < 1, which induces that

IStlloc = IP[D; "RiPilloo < IIP{ lsc D] "RillsoIPillco = D] 'Rifloc <1, 1=>3.

The proof is complete. O

Remark. We remark that G, x arising from several discretization schemes satisfies the assumption in Theorem 2. For in-
stance, the first-order discretization scheme proposed in [12]| holds those assumptions for y € (1,2). The second-order
discretization scheme proposed in [20] holds those assumptions for y € [@, 2). Also, the discretization scheme proposed
in [18] holds those assumptions for ¥ € [y*, 2) where y* ~ 1.5546 is a solution of the equation 3377 —4.237Y 4 6=0.
Note that convergence of .#; and 551 guarantee that high frequency error components [3] can be reduced in each pre- or
post-smoothing iteration, which is a necessary property of smoothers to lead to the convergence of MGM; see for instance
[3]. Besides, the assumption in Theorem 2 guarantees the invertibility of D;, under which the banded smoother works. Thus,
in the following, we only focus on those discretization schemes which satisfy the assumption in Theorem 2.

4.2. Verification for convergence of TGM
Let v = 1. Then, the iteration matrix of TGM is given by [6]

T =Sk - 1I_ A DS,  1=3.

In the following discussion, we verify the convergence of TGM numerically. That is, we compute |T;||> with different [
directly. Set w =7 =dy =e_=1andd_=e; =5. Let hy; =h,;=1/(M; + 1) for [ > 2. We also assume b=bhandd=d
(i.e., the rectangular domain).

For the choice of the real numbers g(y) in (2.3) and (2.4), we refer to both the first-order shifted Griinwald formula pro-
posed in [12] and the second-order dlscretlzation scheme proposed in [20]. Coefficients of the first-order shifted Griinwald
formula in [12] are given by

g” = —w?. k>0, (4.5)
where
1
Wgy) =1, wf{y) = (l — %) W,?:)P k>1. (4.6)
Coefficients of the second-order discretization scheme proposed in [20] are given by
14 y—2 14
g =—Swi g’ =T="wl - TwD k=1, (47)
2 2 2
where w(y)(k > 0) are given by (4.6).

As mentloned above, the second-order discretization scheme (4.7) satisfies the assumption in Theorem 2 only when
y € [@,2). Thus, we compare (4.5) and (4.7) only for the case «, 8 € [@,2). The corresponding computational
results are listed in Table 1 for the first-order discretization scheme (4.5) and in Table 2 for the second-order discretization
scheme (4.7).
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Table 1
Values of ||T;||> with different I and («, 8) when the first-order discretization scheme (4.5) is used.
M +1 (o, B) witha =8 (e, B) with o # B
(1.8,1.8) (1.9,1.9) (1.99, 1.99) (1.6,1.7) (1.6,1.8) (1.6, 1.9)
23 0.35 0.39 0.44 033 0.36 0.39
24 0.49 0.57 0.68 0.42 0.46 0.52
2° 0.59 0.69 0.83 0.52 0.57 0.64
26 0.67 0.77 0.92 0.62 0.69 0.77
Table 2
Values of ||T;||; with different [ and («, 8) when the second-order discretization scheme (4.7) is used.
M;+1 (o, B) witha =8 (o, B) with o # B
(1.8,1.8) (1.9,1.9) (1.99, 1.99) (1.6,1.7) (1.6,1.8) (1.6,1.9)
23 0.29 0.36 0.44 0.28 0.31 0.36
24 0.37 0.49 0.67 0.41 0.47 0.53
2° 0.44 0.59 0.82 0.56 0.65 0.73
26 0.51 0.67 0.91 0.76 0.90 0.99

When o = 8, ||Tj||2 in Table 2 is smaller than that in Table 1. That means, the TGM associated with the scheme (4.7)
has a better convergence than the TGM associated with the scheme (4.5) for the case oo = 8. Tables 1-2 also show that
when « is away from g, ||Tj||; in Table 1 increases much slower than ||Tj||; in Table 2 as I increases. Especially, when M is
large, ||T;||2 in Table 1 is smaller than ||T;||> in Table 2 for the case o # S. That implies when « is away from g, the TGM
associated with the scheme (4.5) is more robust than the TGM associated with the scheme (4.7) when the size of matrix
changes.

5. Numerical results

In this section, we use three examples with rectangular domains, one example with L-shape domain and one example
with U-shape domain to test the proposed MGM with the banded smoother (MGMBS). All numerical experiments are
performed via MATLAB R2013a on a PC with the configuration: Intel(R) Core(TM) i5-4590 CPU 3.30 GHz and 8 GB RAM.

Define the relative error

S L [y
lulloo

where u and @ denote the exact solution and the approximate solution deriving from some iterative solvers. Since the
results of Ey v of different solvers are always the same for the same problem, we won'’t list results of Ey y for examples
with rectangular domains in the following. But since it is unusual to utilize uniform-grid discretization to discretize the
SFDE on non-rectangular domains, results of Ey y for examples with non-rectangular domains will be listed to illustrate the
applicability of the discretization. Note that there are N linear systems to be solved. Thus, we denote by “iter”, the average
of the N iteration numbers. Denote by CPU, the running time of some algorithms by unit second. For convenience, we use
MGMBS(w) to denote Algorithm 2 with the proposed banded smoother of a bandwidth w. Moreover, we take u" as an
initial guess of utl(0<n<N-1) for all experiments and all tested solvers in this section.

As the discussion above, we have different choices of discretization schemes for the approximation of the fractional
derivatives and different choices of the bandwidth w. As mentioned in the remark after Theorem 2, for the second-order
discretization scheme (4.7), we focus MGMBS(w) only on the case «, 8 € [@, 2). Hence, when min{e, 8} € (1, ‘/g’]),
we only use the first-order discretization scheme (4.5). In the following, we use Example 1 to determine the optimal value

of w and to examine which discretization scheme is more suitable for MGMBS(w) when «, 8 € [‘/g’] ,2).

Example 1. Consider the two-dimensional SFDE (1.1)-(1.3) with
ux, y,0) =exp(-OX*2 = 0*y*2 = y)%,  d(x,y,0) =exp(0x*(1+ ),
d-(x,y,) = (4 =01 +y), er(x,y, ) =1+yy’A+x),
e_x,y,)=2—-y)A+x), Q=(0,2) x (0,2), T=1.

We use MGMBS(w) with both the first-order discretization scheme (4.5) and the second-order discretization scheme (4.7)
to solve Example 1. The corresponding results are listed in Table 3 for the scheme (4.5) and Table 4 for the scheme (4.7).
Coinciding with Tables 1-2, Tables 3-4 show that (i) the performance of the proposed algorithm for the second-order
discretization scheme (4.7) is better than that for the first-order discretization scheme (4.5) when o = 8 € [“/@*1,2);
(ii) the performance of the proposed algorithm for the first-order discretization scheme (4.5) is better than that for the
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Table 3
Performance of MGMBS(w) with different values of @ when N =24, v =1 and the first-order discretization scheme (4.5) is used.
(o, B) M+1 MGMBS(1) MGMBS(3) MGMBS(4) MGMBS(6)
iter CPU iter CPU iter CPU iter CPU
(1.1,1.1) 27 11.0 2.03s 11.0 2.09s 11.0 214 s 11.0 219s
28 121 757 s 12.0 783 s 12.0 733 s 12.0 798 s
29 14.0 5748 s 14.0 5853 s 14.0 58.20s 14.0 60.68 s
(1.1,1.5) 27 15.0 270s 14.0 2.60 s 141 2.68 s 15.1 295 s
28 17.0 10.47 s 16.1 9.37s 16.0 1010 s 17.0 10.96 s
29 19.0 7761 s 18.0 7538 s 18.0 76.76 s 18.1 79.85s
(1.6,1.6) 27 9.0 1.65 s 13.0 241s 13.0 246 s 14.0 273 s
28 9.0 5.57s 13.0 794 s 13.0 7.86 s 14.0 879 s
29 9.1 3798 s 13.0 53.97 s 14.0 58.67 s 15.0 64.89 s
(1.6,1.9) 27 13.0 2335 17.0 312s 17.0 318s 18.0 346 s
28 14.0 833s 18.0 10.76 s 19.0 10.96 s 19.0 1241 s
2° 14.0 57.50 s 19.0 7779 s 20.0 83.07 s 21.0 90.22 s
(1.9,1.9) 27 15.0 270s 20.0 3.66 s 21.0 392s 22.0 420s
28 16.0 9.55s 21.0 1295 s 220 12.55 s 23.0 14.82 s
29 16.0 65.43 s 23.0 9415 s 24.0 98.38 s 25.0 106.15 s
Table 4
Performance of MGMBS(w) with different values of @ when N =24, v =1 and the second-order discretization scheme (4.7) is used.
(a0, B) M+1 MGMBS(1) MGMBS(3) MGMBS(4) MGMBS(6)
iter CPU iter CPU iter CPU iter CPU
(1.6,1.6) 27 8.0 152's 12.0 227s 13.0 249 s 14.0 2.80 s
28 8.0 4.86 s 13.0 779 s 14.0 8.39s 15.0 10.00 s
29 8.0 3351 13.0 54.52 s 15.0 63.10 s 16.0 68.78 s
(1.6,1.9) 27 12.0 219s 21.0 3.84s 22.0 4.07 s 23.0 434 s
28 13.0 727 s 27.0 16.21 s 29.0 1631s 310 1833 s
29 13.0 5295 s 310 12428 s 35.0 14228 s 39.0 163.69 s
(1.9,1.9) 27 12.0 216s 18.0 3295 19.0 3.57s 19.0 3.67s
28 12.0 712's 19.0 10.85 s 20.0 11.60 s 21.0 13.24 s
29 12.0 49.42 s 20.0 8235 s 21.0 87.21s 220 94.38 s

second-order discretization scheme (4.7) when « is away from B. Thus, in the following experiments, we focus MGMBS(w)
with the scheme (4.5) on the case o # 8 or min{«, 8} € (1, @) and focus MGMBS(w) with scheme (4.7) on the case

a=p8¢€ [@,2). Moreover, we see that the performance of MGMBS(1) is generally better than MGMBS(w) with @
larger than 1. The reason may be that when w = 1, high frequency error components can be eliminated efficiently by
smoothing procedure and low frequency error components can be removed via correction procedure. However, when w is
large, both low and high frequency error components are removed in the smoothing procedure, it may not be effective for
the convergence of MGM iterations; see, for instance, [3]. Indeed, the computational cost for large w is higher than that for
o = 1. In the following experiments, we focus on the results for w =1 only.

Denote by MGM]JS, Algorithm 2 with Jacobi smoother. For the remaining numerical experiments, we compare MGMBS(1)
with MGM]JS and preconditioned GMRES methods to illustrate high efficiency of MGMBS(1). Note that when w = 0, both the
pre-smoother (3.5) and the post-smoother (3.6) are exactly the Jacobi smoother. Hence, comparing MGMBS(1) and MGM]S
also examines the importance of the positivity of the bandwidth. Moreover, we set % <10~7 as stopping criterion for
GMRES in all experiments of this section, where r; denotes the residual at kth GMRES iteration. The stopping criterion of
MGMBS(1) is given by Algorithm 2. Also, it is well known that another way to generate the matrices on coarse grid, A; and

A; is the Galerkin coarsening technique. i.e.,
Ai=T Al A=L AL, 2<i<i-1. (5.1)

In order to further verify applicability of the proposed banded smoother, we also test MGMBS(1) with coarse grid matrices
given by (5.1), which is denoted by GMGMBS(1). For the case of constant coefficients and in the rectangular domain, the
finest grid matrix is exact block Toeplitz. Therefore, the coarser grid matrices will keep the block Toeplitz structure; see, for
more details, [19]. Nevertheless, (5.1) will distort the block Toeplitz-like structure of the coarser grid matrices in the case of
variable coefficients, which may lead to the expensive matrix-vector multiplication for the coarser grid matrices; see [14].
Thus, we only test GMGMBS(1) for the case of constant coefficient (see Example 2 below).
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Table 5
Results of GMGMBS(1), MGMBS(1), MGMJS and BCCB preconditioner, when N =24 and the scheme (4.5) is used.
(e, B) M+1 GMGMBS(1) MGMBS(1) MGM]JS BCCB
iter CPU iter CPU iter CPU iter CPU
(1.1,1.5) 27 6.3 091s 12.0 1.26 s 33.6 516 s 144 192 s
28 7.4 518 s 15.1 878 s 46.2 2261 s 17.6 737 s
29 9.3 3479 s 18.2 5152 s 62.4 219.66 s 20.9 6721 s
(1.5,1.5) 27 9.0 121s 8.0 087 s 121 1.86 s 129 1.66 s
28 8.0 548 s 8.0 484 s 121 6.84 s 14.0 592 s
2° 8.0 29.95 s 9.0 2633 s 13.1 52.66 s 16.0 50.94 s
(1.6,1.9) 27 15.0 195 s 15.0 1.56 s 39.1 6.54 s 16.9 2.02 s
28 16.0 10.75 s 15.0 878 s 311 18.50 s 209 840 s
29 15.0 5416 s 15.0 4272 s 36.1 13045 s 25.0 82.56 s
Table 6
Results of GMGMBS(1), MGMBS(1), MGM]JS and BCCB preconditioner, when N =24 and the scheme (4.7) is used.
(o, B) M+1 GMGMBS(1) MGMBS(1) MGM]JS BCCB
iter CPU iter CPU iter CPU iter CPU
(1.6,1.6) 27 6.0 0.82 s 6.0 0.65 s 7.0 112's 12.0 139 s
28 6.0 428 s 6.0 372s 7.0 329 s 14.0 5.87 s
2° 6.0 2310 s 6.0 1812 s 8.0 3046 s 16.0 5049 s
(1.75,1.75) 27 8.0 1.08 s 8.0 0.87 s 9.0 141s 121 143 s
28 8.0 550 s 8.0 484 s 9.0 427 s 14.0 5.66 s
29 8.0 29.95 s 8.0 23.56 s 9.0 3410 s 17.0 54.38 s
(1.9,1.9) 27 10.0 133 s 10.0 1.05 s 25.0 3.80s 13.0 149 s
28 10.0 6.83 s 10.0 5.96 s 18.0 8.48 s 15.0 5.86 s
2° 10.0 36.85 s 10.0 28.98 s 11.0 4137 s 16.9 53.60 s
210 10.0 168.07 s 10.0 12718 s 11.0 211.03 s 20.5 253.65 s

Example 2. Consider the two-dimensional SFDE (1.1)-(1.3) with

ux, y,t) =exp(—H)x*(2 — x)?y*2 — y)%,
diy=e,=1, d_=e_=2, Q=(0,2)x(0,2), T=1.

In the case of constant coefficient, A is of block Toeplitz with Toeplitz block structure. It is well known that GMRES with
Strang’s block circulant with circulant block (BCCB) preconditioner [4] is an efficient solver for such linear systems. We solve
Example 2 by GMRES with BCCB preconditioner and MGM]JS, MGMBS(1), GMGMBS(1) with v = 1. The corresponding results
are listed in Table 5 for the first-order discretization scheme (4.5) and in Table 6 for the second-order discretization scheme
(4.7).

From Tables 5-6, we see that the performance of GMGMBS(1) is as almost the same as MGMBS(1), which implies that our
proposed smoother works in the sense of both geometry and algebraic multigrid. Also, the iteration number and CPU cost
of GMGMBS(1) and MGMBS(1) are in general less than both of MGM]JS and GMRES with BCCB preconditioner, which means
multigrid method with the proposed banded smoother is more efficient that MGM]JS and BCCB for Example 2. Moreover,
better performance of GMGMBS(1) and MGMBS(1) compared with MGM]JS also suggests the importance of positivity of the
bandwidth w.

Example 3. Consider the two-dimensional SFDE (1.1)-(1.3) with
ux, y,t) = exp(—0x*(2 — x)*y*(2 — y)2, dy(x, y,0) =[1+ exp(—t)]exp(x* + y)x,
d_(x,y.t) =[1+exp(—D)]exp@x —x* + y)(2 = X)%, e (x,y,t)=[1+exp(—D)]exp(y* +x)y”,
e_(x,y.t)=[1+exp(—D)]expRy — y* + 02 —y)f, ©=(0,2)x(0,2), T=1.

Note that d4, d_, e; and e_ are no longer constants in Example 3. In order to apply the BCCB preconditioner, we take the
averages of these coefficients on the grid points. Also, the row approximation preconditioner proposed in [15] is efficient for
solving the SFDEs with non-constant coefficients. Take 5 interpolating points in each direction for the row approximation
preconditioner and denote it by P(5). The results of BCCB, P(5), MGMBS(1) and MGM]JS with v =1, are listed in Table 7 for
the first-order discretization scheme (4.5) and in Table 8 for the second-order discretization scheme (4.7).

From Tables 7-8, we see that both CPU cost and iteration number of MGMBS(1) are much less than those of other three
solvers for Example 3, which means MGMBS(1) is the most efficient one among the four solvers. Moreover, better perfor-
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Table 7
Results of MGMBS(1), MGM]S, P(5) and BCCB, when N = 2% and the scheme (4.5) is used.
(o, B) M+1 MGMBS(1) MGM]JS P(5) BCCB
iter CPU iter CPU iter CPU iter CPU
(1.1,1.5) 27 141 295s 52.0 8.88s 62.5 23.56 s 296.6 21019 s
28 17.0 1134 s 72.0 3715 s 89.8 130.26 s 824.3 2084.67 s
29 20.0 89.64 s 96.0 39112 s 134.7 1503.40 s 2134.6 5934145 s
(1.5,1.5) 27 8.0 187 s 16.0 278 s 36.8 1332s 142.5 5345 s
28 8.0 6.53 s 179 933 s 479 63.80 s 184.6 310.61 s
29 9.0 46.92 s 18.0 73.74 s 62.9 562.59 s 2331 5285.75 s
(1.6,1.9) 27 121 259 s 57.0 9.56 s 44.8 18.01 s 91.2 2365 s
28 13.0 9.16 s 74.0 38.26 s 59.1 8174 s 1171 13412 s
29 13.0 6292 s 91.0 37273 s 79.8 772.04 s 151.7 229243 s
Table 8
Results of MGMBS(1), MGMJS, P(5) and BCCB, when N =2* and the scheme (4.7) is used.
(a0, B) M+1 MGMBS(1) MGM]JS P(5) BCCB
iter CPU iter CPU iter CPU iter CPU
(1.6,1.6) 27 8.0 188 s 14.0 253 s 34.8 12.75 s 140.8 51.70 s
28 8.0 6.56 s 15.0 840 s 444 6042 s 160.0 239.09 s
29 8.0 4335 s 16.0 68.26 s 57.2 511.85 s 179.8 3163.72 s
(1.75,1.75) 27 7.0 171s 17.0 3.02s 331 1215 s 77.6 1852's
28 8.0 6.55 s 19.0 10.71 s 433 5830 s 89.1 84.61 s
29 8.0 4340 s 19.0 97.99 s 54.5 472.28 s 105.4 1190.28 s
(1.9,1.9) 27 10.0 223s 24.0 419 s 353 1291 s 55.7 1028 s
28 10.0 7.64 s 24.0 1344 s 44.6 62.09 s 66.6 50.20 s
29 110 54.99 s 24.0 97.99 s 571 506.85 s 814 730.81 s

mance of MGMBS(1) compared with MGM]JS again demonstrates that positivity of the bandwidth w is useful to accelerating
the convergence of MGM and improving the efficiency.

Example 4. Consider two-dimensional SFDE with
u( y,0 = exp(-0x2(1 =022 =02 (1 = ?@ = y)? di(x, .0 =exp (sin?(20y) +ax),
d_(x,y,t) =exp (sin2 (20y) + (2 — x)) , er(x,y,t) =exp (sin2 (20x) + ,By) ,
e_(x,y,t) =exp (sin2(20x) + B2 — y)) , Q=([0,2] x [0,2])\ ((1,2) x (1,2)), T=1.

For Example 4, we extend the banded preconditioner proposed in [9] to solving the SFDE on L-shape domain. Let

R N T
A© 1 1 1 |:D+B((;,)M LD (Bff,)M) ] +1y [E+B;;)M +E_ (stc)M) ] ,

M M ﬂM (C,d) (Cld)
o, s

( (clu) (Cru)

§© _[m@(;” o } o | Gy ®ly Gy ®ly
_ © 1

0 Iy ® Gy

where G@ and G(C)M are diagonal-compensated banded truncations of G, y; and Gq M, respectively [9], bandwidths of

G(C) and G(C LW are 21 and I, respectively, G;C Lu) ¢ gMxM G;flrw“) € RMxM, G;: Ld) o RMXM apd G;f]:/ld) € RM*M denote the

partitions of G(C) such that

G(c,l.,u) G(c,r.,u)

© M M
G o= G’?c,l,d) Gl(gc,r,d) ’
B.M v

provided that G;;) is a diagonal-compensated banded truncation of Gg 1 [9] and bandwidth of G;C) is 2I. Here,

I =log,(M + 1). Then, we obtain a banded preconditioner P, = LUy such that L,U, is the incomplete LU factorization
with no fill-in (ILU(0)) of A©). We solve Example 4 by GMRES with the extended banded preconditioner P, MGMBS(1) and
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Table 9
Results of MGMBS(1), MGMJS and P, when N =23 and the scheme (4.5) is used.
(o, B) M+1 MGMBS(1) MGM]JS P,
iter CPU En.m iter CPU En.m iter CPU En.m
(1.1,1.5) 27 12.0 234 s 2.18e—2 334 6.50 s 2.18e—2 46.1 5.03 s 2.18e—2
28 141 777 s 1.08e—2 46.6 2431s 1.08e—2 911 4796 s 1.08e—2
2° 171 49.79 s 511e-3 66.0 188.75 s 511e-3 1811 124932 s 511e-3
(1.5,1.5) 27 7.0 140 s 1.08e—2 12.0 271 s 1.08e—2 43.0 474 s 1.08e—2
28 7.0 398 s 5.38e—3 10.0 576 s 5.38e—3 78.0 3935 s 5.38e—3
29 8.0 2551 s 2.72e-3 10.0 3037 s 2.72e-3 147.0 861.63 s 3.42e—4
(1.6,1.9) 27 8.0 158 s 8.00e—3 48.0 9.36 s 8.00e—3 65.0 829 s 8.00e—3
28 8.0 452 s 3.92e-3 - - - 1231 78.98 s 3.92e-3
2° 8.0 25.50 s 1.95e—3 - - - 2371 2061.80 s 1.95e—3
Table 10
Results of MGMBS(1), MGMJS and P, when N =23 and the scheme (4.7) is used.
(o, B) M+1 MGMBS(1) MGM]JS Py
iter CPU En.m iter CPU En.m iter CPU En.m
(1.6,1.6) 27 5.0 1.02 s 2.09e—3 8.0 1.66 s 2.09e—3 41.0 430 s 2.09e-3
28 5.0 292 s 6.64e—4 9.0 4.80 s 6.64e—4 77.0 36.69 s 6.64e—4
2° 5.0 1691 s 342e—4 11.0 3549 s 342e—4 147.0 854.85 s 3.42e—4
(1.75,1.75) 27 6.0 123 s 1.84e—3 9.0 218 s 1.84e—3 52.0 6.15 s 1.84e—3
28 6.0 346 s 5.48e—4 12.0 821s 5.48e—4 98.0 56.89 s 5.48e—4
29 6.0 19.99 s 2.43e—4 18.0 4814 s 2.43e—4 189.9 1379.79 s 2.43e—4
(1.9,1.9) 27 8.0 1.64 s 1.51e-3 17.0 3.09 s 1.51e—3 65.0 829 s 1.51e—3
28 8.0 464 s 436e—4 18.0 918 s 436e—4 126.0 8214 s 436e—4
29 8.0 25.68 s 1.75e—4 44.0 12770 s 1.75e—4 248.0 2244.46 s 1.75e—4
210 9.0 157.96 s 118e—4 - - - 660.9 3020737 s 1.18e—4

MGM]JS with v = 2. The corresponding results are listed in Table 9 for the first-order discretization scheme (4.5) and in
Table 10 for the second-order discretization scheme (4.7).

‘—’ denotes divergence of solver. Note that from Tables 9-10, Ey s of different solvers are always the same and small
except for some cases of divergence, which suggests that the uniform-grid discretization of SFDE on L-shape domain, (2.9) is
actually applicable. Also, iteration number and CPU cost of MGMBS(1) are much smaller than the other two solvers, which
means MGMBS(1) is the most efficient one among the three solvers for solving the SFDE on L-shape domain. Moreover, we
note that MGM]S diverges for the case of both (¢, 8) = (1.6,1.9) and (&, 8) = (1.9, 1.9) when M is large. That means the
positivity of bandwidth « can not only accelerate the convergence of MGM but also remedy the situation where MGM]S is
not even applicable.

5.1. MGMBS for SFDE on U-shape domain

In this subsection, we extend the proposed MGM to solving SFDE on a U-shape domain which results from an SFDE on
a rectangular domain. Consider the SFDE on rectangular domain with

ux,y,t)= (5.2)

3 2 _
exp(—0) [ [T&x=k* | ([T -k?), .y, eQuxI0,TI,
k=0 k=0
0, (x.y.t) € Qs x [0, T],
Q=(0,3)x(0,2), T=1, dy(x,y)=d_(x,y)=exp(sin®(20y) +sin’x), (x,y) € R,
er(x,y)= exp(sin2(20x) + 2sin? y), e_(x,y)= exp(sin2 (20x) +3 sin2(2y)), x,y) € 2,
where Qg = [1,2] x [1,2], Qu=0 \ Qg is a U-shape domain. We assume that values of the solution u(x, y,t) on the
domain (x, y,t) € Qs x [0, T] are already known while values of the solution u(x, y, t) on the domain (x, y,t) € Qu x [0, T]

are unknowns to be solved, where Qy denotes the interior of Qy. Then, the SFDE problem on the rectangular domain Q is

transformed into an SFDE on the U-shape domain Qy such that
ou(x, y,t
% =d(x, y, )oDgux, y,t) +d_(x,y,t) xDSu(x, y,t) + e4(x, y,t) oDiu(x, y,t)+

e_(x,y.0) yDj ux. y.0 + f(x,y.0), * y.t) € Qu x (0, T], (53)
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ux,y,t)=0, x,y,t) ey x (0, T], (5.4)
ux, y,00 =x*(x — 1)2(x - 2)?(x = 3)%y*(1 = »)?Q - y)%, . y) €Qu,

where 9Qy denotes the boundary of Qy, f is determined by (5.2),

2, xe(0,1HU(2,3),

d(x) = 1, xe[l,2].

The rest of this subsection is devoted to (i) showing structure of the coefficient matrices resulting from uniform-grid dis-
cretization of the SFDE on U-shape domain, (5.3)-(5.5); (ii) demonstrating how to apply the proposed MGM to solving the
corresponding linear systems.

Let N and M be positive integers. Denote by T =T /N and h = 1/(M + 1), the temporal-step size and the spatial-step size,
respectively. Define the temporal girds, spatial grids in x-direction and spatial grids in y-direction by {t, =nt|0 <n < N},
{xi =ih|0 <i < My+1} and {y; = jh|0 < j < My + 1}, respectively, where My =3M +2 and My = 2M + 1. Then, the vectors
consisting of spatial-grid points with x-dominant ordering and y-dominant ordering are respectively defined by

PyxM= (%(,M,w 'Vx,M,u)T e V<1 and Py ym= ("f/y,M,,, Yy M.m> 7/y7M,r)T e W1, (56)
where M = M(My + M + 1),
ViMd = ({Pn},{l"l, {Piz}f‘i*l, {p,.M}l{V’:x]) e T1XMM
TaMu = <{I~)i’M+1}i2£/Ilv {Pims2}. el “31',1\'/1},}1'22/11> e T1x(My+DM
YyMl= ({Plj}?»./':yl, {sz}?l:yl, s {PM]-}?/':V]) c ’H‘]XI\./IyM’
Py Mm = ({PM+LJ'}5VI:1’ {PM+z,j}§V’:1, {PZMH’J.}?’I:]) e T XM+2M
Yymr= ({P2M+3,j}§/1=yl’ {P2M+4,j}§2/1, {PMX,j}?./I:yl) e TI*MyM

= [Pij, 1<i<M,

P— M+1<j<M,,
U Pismsnj. M+1=i<2Mm, ==
P;j denotes the point (x;, yj) for 0 <i <My+1,0< j <M, + 1, respectively.
By (2.3)-(2.4) and forward difference approximation of %—Lt’ we obtain an implicit finite difference discretization of the

SFDE on the U-shape domain Qy as follows

W —u") = — (9B +h FBy)u™ + 71 0<n<N-1, (5.7)
where u" = u(Zy xm, tn), ' = f(Pyxm,th),
By =D Byom+D Bj, . B, =E Bygum+E_B| ;.
D =diag(d+(Z2u xm)). Ei =diag(e+(Pu x,m)).
(lu) . (r,u) z
]§UBM— G,S,My®IMX G,B,My®IM o1 _|: Iy OMXMX OMXMi|
BM = dy o 3T (r,d) ’ - |10 0, .7 I ’
Gﬁ,My ®IM Gﬁ,My ®12M MxM YMx My M

By,a,m = blockdiag(Iy ® Gy, j; . Iv+1 ® Gi’MX),
: (Lu) MxM (ru) MxM, gd.d MyxM 0.d) My <M, iti .
provided that Gﬂny eR , G,s,My eR , Gﬁ’My eR , Gﬂ,My eR are partitions of G ; ~such that

clw  grw

| ey, Bpm
Comr, = | gl gtw |
g, CBM,

Gi i € RMxxMx derives from deleting the median My columns and the median My rows of G, 1y, Here, My = My — 2M
and My =My — M.
Similar to the discussion in Section 3, the resulting task from (5.7) is to solve

Au=bh, (5.8)
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where b e RMx! denotes some given right hand sides, u is the unknown vector to be solved,
A=1j +nx(DsBy oy + D_f’vlTJ,a,M) +ny(E+By g + E—ﬁ—[r_]’ﬁ’M)v

with 7y =th™ and ny, = th=". As we see, A in (5.8) is a block matrix with each block being BTL. Thus, matrix-vector
multiplication of A in (5.8) requires only O (M? log M) operations and only ((M?) storage.

Now, we consider extending the proposed MGM to solving the linear system (5.8). We only need to redefine the restric-
tion operator, the interpolation operator, the pre-smoothing iteration .#; and the post-smoothing iteration .#; in Algorithm 1.
Let M; =21 — 1 for i > 2 and M = M, for some | > 2. The corresponding spatial steps are given by h; = 1/(M; + 1) for
2 <i<I. Denote I\'/Ix,i =3M; + 2, My,i =2M;+1 and M; = M,‘(I\'/qui + I\'/Iy,i +1), for i >2.

We firstly focus on construction of the pre-smoother .#; and the post-smoother .. Denote A;, A in (5.8) with M = M;.
Split A; as A; =D; — R;, where D; is banded truncation of A; with a bandwidth w. Define the permutation matrices P; such
that

2u.y.m; = PiPy x M 3<izl

Then, we obtain A; = P;A;P!. Again, split A; as A; = D; — R;, where D; is banded truncation of A; with bandwidth w. Then,
similar to the discussion in Section 3, for a linear system

Aix =Yy, 3<i<l|,

with a randomly given right hand side y € RM"“, we obtain two banded splitting iteration schemes as pre-smoother and
post-smoother such that

X = 70, y) =X+ D (y — AxD), 3<i<l, (5.9)
X = 7k y) i=x + PID TP (y — AXF), 3<i<l (5.10)
Here, the construction of D; requires only (’)(Miz) storage and only (’)(Miz) operations via the relationship A; = P,~A,~P1.T.

Again, we still refer to piecewise linear restriction operator lf 41 and piecewise linear interpolation operator lf“, which
on U-shape domain are however defined by

3 T T (rw
i = [JM,- ®li ] i1 = | A @ b
i Ji®lil l e

where Jy, and Iy, are given by (3.8),

}, 2<i<l—1, (5.11)

Ji = blockdiag(1,Ju,),  Ji = blockdiag(m;.Ji. Ji).  Ji = blockdiag(Ju;, Jm,)
00 , 0 2 O1xm;
J"(T,U):|:I'r 0i|, Ji: |:.'M1 1 :|’ Jl‘(rvd):|: 1xM i|®j;r,
1

0 Ju e, 4y,

where ey, 1 denotes the first column of Iy, ,, 0= On; x(M;+2)M;,,» O denotes zero matrix with proper size.

Note that A; is still a block matrix with each block being BTL for 2 < i <. Moreover, both the restriction and the
interpolation operator in (5.11) are still sparse. Thus, similar to the discussion in Section 3, operations cost and storage
requirement of Algorithm 1 for solving the SFDE on U-shape domain are still of @(M?logM) and (O(M?), respectively.
Besides, the convergence property of (5.9) and (5.10) can be similarly proved.

In the rest of this subsection, we firstly extend the banded preconditioner proposed in [9] to the linear system (5.8). And
then, we solve the SFDE (5.3)-(5.5) by using GMRES with the extended banded preconditioner, MGMBS(1) and MGM]S and
compare the results.

In order to construct the banded preconditioner, we solve the linear system under a permuted ordering such that

Au=bh, (5.12)
where A=A, @t =Pu, b= Pb. It is easy to see that (5.12) is actually equivalent to (5.8).
For any X € RMxxMx 'y ¢ RMyxMy 7 ¢ RM*M define a mapping .Zu such that

FuX,Y.2) =1 + 15 [D1. w00 +D_73,00] + 0y [E4 A (¥, 2) + B}, (1. 2) |,
where

QM X) = x(t.m ®i'11\'/1 x(m.m) ®1Iy X(T.m ®i"l;/1 xtm  xmm)  x(rm)

Xy, X™ely Xt el {xa,u) X(m.u) x(r,u>:|
, X= ,
(,d) . (md) o1 (r.d) . (,d) (m,d) (r,d)
el xX™Vely Xely X X X

X(l.u)7x(r,u),x(l,d)7X(nd) e RMxM7 x(m,u),x(m,d) GRMXI\_/IX’ X(I.m),x(r,m) c RI\_/IXXM’

X ¢ RMoMx gy (Y, Z) = blockdiag(Iy @ Y. Iy, ®@ Z.Iy ®Y).



X. Lin et al. / Journal of Computational Physics 336 (2017) 69-86 85

Table 11
Results of MGMBS(1), MGM]S and P, when N =1 and the scheme (4.5) is used.
(o, B) My +1 MGMBS(1) MGM]JS Py
iter CPU Enm iter CPU Enm iter CPU En.m
(1.1,1.5) 27 22.0 0.80 s 3.09e-2 124.0 3.67 s 3.09e-2 43.0 0.82s 3.09e—-2
28 32.0 317 s 1.40e-2 203.0 1813 s 1.40e—2 69.0 6.36 s 1.40e—-2
29 42.0 2353s 1.52e-2 276.0 150.30 s 1.52e-2 109.0 11846 s 1.52e—-2
(1.5,1.5) 27 11.0 0.36's 1.67e-2 33.0 0.97 s 1.67e-2 63.0 131s 1.67e—2
28 12.0 125 s 6.37e—3 38.0 339 6.37e—3 110.0 1287 s 6.37e—-3
29 13.0 8.08 s 9.22e-3 42.0 22.28s 9.22e-3 194.0 34124 s 9.22e-3
(1.6,1.9) 27 10.0 031s 391e-3 111.0 321s 391e-3 75.0 173 s 391e-3
28 11.0 117 s 5.03e-3 - - - 135.0 1753 s 5.03e-3
29 11.0 6.59 s 6.39e—-3 - - - 244.0 498.76 s 6.39e—-3
Table 12
Results of MGMBS(1), MGM]S and P, when N =1 and the scheme (4.7) is used.
(o, B) My +1 MGMBS(1) MGMJS P,
iter CPU Enm iter CPU En.m iter CPU En.m
(1.6,1.6) 27 11.0 037 s 1.30e—2 29.0 0.85s 1.30e—2 58.0 120 s 1.30e—-2
28 12.0 118 s 1.22e—2 34.0 291s 1.22e—2 104.0 1154 s 1.22e-2
29 12.0 735s 1.20e—-2 615.0 33947 s 1.20e—2 186.0 303.58 s 1.20e—-2
210 13.0 38.03 s 1.20e—2 - - - * * *
(1.75,1.75) 27 9.0 031s 9.56e—3 32.0 0.98 s 9.56e—3 79.0 1.82s 9.56e—3
28 10.0 1.03 s 8.76e—3 163.0 1497 s 8.76e—3 147.0 2036 s 8.76e—3
29 10.0 6.57 s 8.57e—3 - - - 276.0 659.40 s 8.57e-3
(1.9,1.9) 27 9.0 0.28 s 741e-3 43.0 131s 741e-3 105.0 2.89 s 7.41e—-3
28 9.0 0.94 s 6.59e—3 - - - 205.0 3549 s 6.59e—-3
29 9.0 543 s 6.40e—3 - - - 430.0 883.24 s 6.40e—3

By straightforward calculation, it is easy to check that A = ﬁM(Ga’ My Gﬂ’ Wy Gg.m).

Now, we consider constructing banded preconditioner for A. Let Gg)M, G©. and G;C)- be diagonal-compensated banded
’ S VX

B,M, M
truncations of Gg u, Gy w, and G, My respectively [9]. Here, the bandwidths of the G;,C)M, G;;)M and G;C)M are [, 21 and
. , . M, My

31, respectively, with [ =log,(M + 1). Then, we obtain a banded preconditioner P, = L, U, such that L,Uj is the incomplete

LU factorization with no fill-in (ILU(0)) of A© = Zy, (cf;)Mx,cf;)M ,c‘gﬂw). The results of P,, MGMBS(1) and MGM]S with
v =2 for solving (5.3)-(5.5) are listed in Table 11 for the ﬁrst—ogder discretization scheme (4.5) and in Table 12 for the
second-order discretization scheme (4.7).

‘—" and ‘%’ denote divergence and running out of memory, respectively. From Tables 11-12, we note that even for the
smallest N (i.e., N=1), Ey u are still small, which suggests that (5.7), the uniform-grid discretization of SFDE on U-shape
domain is actually applicable. Clearly, both CPU cost and iteration number of MGMBS(1) are significantly smaller than
the other two solvers, which means that MGMBS(1) is far more efficient than the other two solvers for solving the SFDE
on U-shape domain. Note also that iteration number of MGM]JS changes drastically and it even diverges in all cases but
(o, B) =(1.1,1.5), (1.5,1.5) of Tables 11-12 for large My. This again implies the positivity of the bandwidth w is useful to
not only significantly improving efficiency of MGM but also reversing divergence of MGM]S.

Remark. Note that in Tables 3-12, iteration number of any solver mentioned above always has an evident tendency to
increase as M increases when « is close to 1 and |« — 8| is large; say, the case of («, 8) = (1.1, 1.5). Such a case may lead
to the SFDE becoming an anisotropic problem, for which the multigrid method usually does not work well; see, for instance,
[6]. Nevertheless, our proposed V-cycle MGM still has a better numerical performance compared with other solvers.

6. Concluding remarks

In this paper, we have proposed and studied a V-cycle MGM with the proposed banded smoother as a fast solver for
the linear systems arising from uniform-grid discretization of two-dimensional time-dependent SFDEs on rectangular and
non-rectangular domains. Complexity analysis shows that one iteration of MGMBS(w) requires only O(M?log M) operations
and O(M?) storage. Theoretically, we prove the convergence of the proposed banded smoother in the sense of infinity norm.
Moreover, a number of numerical results in Section 5 show that the total operations cost and the total storage requirement
of MGMBS(1) for recursively solving the N linear systems are of O(NM?log M) and O(M?), respectively when |o — 8| is
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small. Moreover, via comparing MGMBS(1) with other solvers, it shows that MGMBS(1) is significantly more efficient than
the other tested solvers. Also, with comparison between MGMBS(1) and MGM]JS, it demonstrates that the positivity of w
is of great importance for MGM to remarkably improve its efficiency for solving SFDE problems and remedy divergence
of MGM]JS. We will consider a rigorous proof of convergence of MGMBS(w), modifying the performance of our proposed
method in the possibly anisotropic case (e.g., (&, 8) = (1.1, 1.5)) as our future research work.
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