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In this paper, we devote to the study of high order finite difference schemes for one- and
two-dimensional time–space fractional sub-diffusion equations. A fourth order finite dif-
ference scheme is invoked for the spatial fractional derivatives, and the L1 approximation
is applied to the temporal fractional parts. For the two-dimensional case, an alternating
direction implicit scheme based on L1 approximation is proposed. The stability and con-
vergence of the proposed methods are studied. Numerical experiments are performed to
verify the effectiveness and accuracy of the proposed difference schemes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary orders. During
the past decades, fractional calculus has gained great popularity due to its widespread applications in fields of science and
engineering [1–5]. One of its most important applications is to describe the sub-diffusion and super-diffusion process [6–9].
The suitable mathematical models are the time and/or space fractional diffusion equations, where the classical first order
derivative in time is replaced by the Caputo fractional derivative [10] of order γ ∈ (0, 1), and the second order derivative in
space is essentially replaced by the Riemann–Liouville fractional derivative [10] of order α ∈ (1, 2). It is well known that the
analytical solutions to the fractional differential equations are usually difficult to derive and always contain some infinite
series even if it is luckily obtained,whichmake evaluation very expensive. Therefore, the development of numericalmethods
for these problems has received enormous attention and undergone a fast evolution in recent years [11,6,12–16,9,17–24].

Among a variety of techniques developed for fractional differential equations, the finite difference method should
be the most popular one because it is direct and convenient to use. Meerschaert and Tadjeran [18] initially proposed
a shifted Grünwald–Letnikov discretization to approximate the space fractional differential equations with a left sided
Riemann–Liouville fractional derivative, which they showed to be stable and first-order accuracy in space. Extensions of
this scheme to address various space fractional differential equations [25,19,23,26] followed soon after. Recently, Deng and
his co-workers [27–29] exploited theweighted and shifted skill to construct a series of high-order finite difference schemes,
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named weighted and shifted Grünwald difference (WSGD) approximations, to the Riemann–Liouville space fractional
derivatives. Motivated by this idea, Hao, Sun, and Cao [30] proposed a fourth-order quasi-compact difference scheme
by carefully weighting the Grünwald approximation formula with different shifts and combining the compact technique
for solving space fractional differential equations. For time fractional differential equations, the L1 formula [31] should
be the major numerical differentiation formula to directly discretize the temporal fractional derivatives. Based on the L1
approximation, many stable numerical schemes have been established and analyzed [32–34,13,35,36] in the past decade.

Besides time or space fractional differential equations, the fractional differential equationswith both temporal and spatial
fractional derivatives have also received an increasing attention in recent years and have been used tomodel awide range of
phenomenons [37–42,21,22,43]. Therefore, the design of efficient and stable numerical schemes for time–space fractional
differential equations is also an important activity. Liu et al. [44] proposed an implicit finite difference approximation to
the time–space fractional diffusion equation, where the unconditional stability and first-order accuracy in both time and
space were proved. Yang et al. [45] derived a novel numerical method based on the matrix transfer technique in space
and finite difference scheme (or Laplace transform) in time to deal with the time–space fractional diffusion equations in
two dimensions. Chen, Deng, and Wu [6] applied the L1 approximation to the time fractional derivative and second-order
finite difference discretizations to the space fractional derivative for solving the two-dimensional time–space Caputo–Riesz
fractional diffusion equation with variable coefficients in a finite domain. Most recently, an alternating direction implicit
(ADI) scheme with second-order accuracy in both time and space is constructed to the time–space Caputo–Riesz fractional
diffusion-wave equation by Wang, Vong, and Lei [46]. In the paper they also considered the time–space fractional sub-
diffusion equation and constructed a full discretization difference scheme without dimensional (directional) splitting by
the L1 formulae in time and second-order approximation in space.

In this paper, we focus on the high-order finite difference schemes for time–space fractional sub-diffusion equations.
The proposed schemes are based on using the fourth-order quasi-compact difference scheme proposed by Hao, Sun, and
Cao [30] for spatial approximation, which needs fewer grid points to produce a high accuracy solution. For the temporal
discretization, we adopt the L1 approximation. Both one- and two-dimensional time–space fractional diffusion equations
are considered. For the two-dimensional case, we also construct an ADI scheme based on the L1 approximation to reduce
the storage requirement and the computational burden. Theoretical analyses show that the proposed schemes for both one-
and two-dimensional cases are unconditionally stable and convergent.

The paper is organized as follows. In Section 2, we introduce the approximation of fourth-order quasi-compact finite
difference scheme for Riemann–Liouville fractional derivatives and the L1 approximation to Caputo fractional derivatives.
In Section 3, we apply these approximations to construct a full discretization scheme for the one-dimensional time–space
fractional diffusion equation. The stability and convergence of the proposed scheme are discussed. In Section 4, we extend
the discretization scheme to two-dimensional case. An ADI scheme based on L1 approximation is derived and the stability
and convergence of the scheme are rigorously proved. Numerical examples are presented in Section 5 to support our
theoretical analysis. Finally, concluding remarks are offered in Section 6.

2. Finite difference approximations of spatial and temporal fractional derivatives

We first introduce some definitions of fractional derivatives and then present their finite difference approximations.

Definition 2.1 ([10]). Forα ∈ (n−1, n) (n ∈ N+), letu(x)be (n−1)-times continuously differentiable on (a, ∞) (or (−∞, b)
corresponding to the right derivative) and its n-times derivative be integrable on any subinterval of [a, ∞) (or (−∞, b]
corresponding to the right derivative). Then the left and right Riemann–Liouville fractional derivatives of the function u(x)
are defined as

aD
α
x u(x) =

1
Γ (n − α)

dn

dxn

 x

a

u(ξ)

(x − ξ)α−n+1
dξ

and

xD
α
b u(x) =

(−1)n

Γ (n − α)

dn

dxn

 b

x

u(ξ)

(ξ − x)α−n+1
dξ,

respectively.

We remark that the ‘a’ in the definition can be extended to be ‘−∞’ and ‘b’ to be ‘+∞’. In the following discussion, we
assume that u(x) is defined on [a, b] and whenever necessary u(x) can be smoothly zero extended to (−∞, b) or (a, +∞)
or even (−∞, +∞).

Definition 2.2 ([10]). For γ ∈ (n − 1, n) (n ∈ N+), let u(t) be (n − 1)-times continuously differentiable on (0, ∞) and its
n-times derivative be integrable on any subinterval of [0, ∞). Then the Caputo fractional derivative of the function u(t) is
defined as

C
0D

γ
t u(t) =

1
Γ (n − γ )

 t

0

u(n)(ζ )

(t − ζ )γ−n+1
dζ , t ∈ (0, ∞).
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Most recently, Hao, Sun, and Cao [30] established a fourth-order quasi-compact finite difference scheme to Riemann–
Liouville fractional derivatives. The essential idea is to vanish the low order leading terms in asymptotic expansions for the
truncation errors by the weighted average. Let the WSGD operators for 1 < α ≤ 2 be defined by

δα
x,±u(x) = λ1Aα

±,h,1u(x) + λ0Aα
±,h,0u(x) + λ−1Aα

±,h,−1u(x), (2.1)

where

h > 0, λ1 =
α2

+ 3α + 2
12

, λ0 =
4 − α2

6
, λ−1 =

α2
− 3α + 2
12

,

and

Aα
±,h,ru(x) =

1
hα

∞
k=0

g(α)
k u(x ∓ (k − r)h) for r = 1, 0, −1, (2.2)

are the first order shift Grünwald difference operator to Riemann–Liouville fractional derivatives [18] with coefficients
g(α)
0 = 1, and

g(α)
k =

(−1)k

k!
α(α − 1) · · · (α − k + 1), k = 1, 2, . . . .

In [30], it was showed that the operators in (2.1) have second order accuracy for approximating Riemann–Liouville fractional
derivatives. Letting the second order central difference operator δ2

xu(x) = [u(x − h) − 2u(x) + u(x + h)]/h2 and denoting
the finite difference operator

Hαu(x) =

1 + cαh2δ2

x


u(x) with cα =

−α2
+ α + 4
24

,

they derived the following fourth-order approximations to Riemann–Liouville fractional derivatives.

Lemma 2.1 ([30]). Let u(x) ∈ L1(R) and u(x) ∈ L4+α(R). Then for a fixed h, we have

Hα


−∞Dα

x u(x)


= δα
x,+u(x) + O(h4),

Hα


xD

α
+∞

u(x)


= δα
x,−u(x) + O(h4).

The symbol L4+α(R) in the above lemma refers to

L4+α(R) =


u

 +∞

−∞

(1 + |τ |)4+α
|û(τ )|dτ < ∞


,

where û(τ ) =


+∞

−∞
eiτxu(x)dx is the Fourier transformation of u(x).

Using (2.2), the WSGD operators δα
x,±u(x) in (2.1) can be rewritten as

δα
x,±u(x) =

1
hα

∞
k=0

w
(α)
k u(x ∓ (k − 1)h), (2.3)

where

w
(α)
0 = λ1g

(α)
0 , w

(α)
1 = λ1g

(α)
1 + λ0g

(α)
0 ,

w
(α)
k = λ1g

(α)
k + λ0g

(α)
k−1 + λ−1g

(α)
k−2, k ≥ 2.

Following [30], for u(x) ∈ C[a, b] with u(a) = u(b) = 0, we make zero-extension such that u(x) is defined on R. Suppose
u(x) ∈ L4+α(R), one can get by Lemma 2.1 that

Hα(aD
α
x u(x)) =

1
hα

⌊ x−a
h ⌋

k=0

w
(α)
k u(x − (k − 1)h) + O(h4),

Hα(xD
α
b u(x)) =

1
hα


b−x
h


k=0

w
(α)
k u(x + (k − 1)h) + O(h4).

For the Caputo fractional derivative, there exists the following L1 approximation.
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Lemma 2.2 ([47]). Suppose 0 < γ < 1, u(t) ∈ C2
[0, T ]. Take an integer n, let n = t/τ (τ > 0), and denote

D
γ
t u(t) =

τ−γ

Γ (2 − γ )


u(t) −

n−1
k=1

(an−k−1 − an−k)u(kτ) − an−1u(0)


(2.4)

where ak = (k + 1)1−γ
− k1−γ . Then C

0D
γ
t u(t) − D

γ
t u(t)

 ≤
1

Γ (2 − γ )


1 − γ

12
+

22−γ

2 − γ
− (1 + 2−γ )


max
0≤s≤t

|u′′(s)|τ 2−γ .

In the following, we apply the above fourth-order finite difference approximation and the L1 approximation to construct
full discretization schemes for time–space fractional sub-diffusion equations.

3. One-dimensional time–space fractional diffusion equation

In this section, we consider the following one-dimensional time–space fractional diffusion equation
C
0D

γ
t u(x, t) = K+

1 aD
α
x u(x, t) + K−

1 xD
α
b u(x, t) + f (x, t), (x, t) ∈ (a, b) × (0, T ], (3.1)

u(a, t) = φ1(t), u(b, t) = φ2(t), t ∈ (0, T ], (3.2)
u(x, 0) = u0(x), x ∈ [a, b], (3.3)

where C
0D

γ
t is the Caputo fractional derivative with 0 < γ < 1, aD

α
x and xD

α
b are the left and right Riemann–Liouville

fractional derivatives with 1 < α ≤ 2, respectively. The diffusion coefficients K+

1 and K−

1 are nonnegative constants with
K+

1 + K−

1 ≠ 0. If K+

1 ≠ 0, then φ1(t) ≡ 0, and if K−

1 ≠ 0, then φ2(t) ≡ 0. We remark that if K+

1 = K−

1 , then the above
equation reduces to the one-dimensional time–space Caputo–Riesz fractional diffusion equation [6]. Assume (3.1)–(3.3)
have a unique solution u ∈ C6,2

x,t ([a, b] × [0, T ]). Define

û(x, t) =


u(x, t), (x, t) ∈ [a, b] × [0, T ],

0, others.

Suppose for any fixed t ∈ (0, T ], û(x, t) ∈ L4+α(R). Throughout this paper, we assume that these conditions are satisfied
when referring to the solution of (3.1)–(3.3).

3.1. Derivation of the finite difference scheme

Define the uniform time stepsize as τ = T/N with N being a positive integer and let tn = nτ , 0 ≤ n ≤ N . The time
domain [0, T ] is covered by Ωτ = {tn|0 ≤ n ≤ N}. Given grid function w = {wn

|0 ≤ n ≤ N} on Ωτ .
For spatial approximation, let h = (b− a)/M with a positive integerM and take the mesh points xi = a+ ih, 0 ≤ i ≤ M .

The spatial domain [a, b] is covered by Ωh = {xi|0 ≤ i ≤ M}. For any grid function v = {vi|0 ≤ i ≤ M} on Ωh, denote

δ2
xvi =

vi+1 − 2vi + vi−1

h2

and

Hαvi =


(1 + cαh2δ2

x )vi, 1 ≤ i ≤ M − 1,
vi, i = 0 or M.

For convenience of presentation, let

Dα
x = (K+

1 aD
α
x + K−

1 xD
α
b ), δα

x = (K+

1 δα
x,+ + K−

1 δα
x,−). (3.4)

Considering (3.1) at the point (xi, tn), we have
C
0D

γ
t u(xi, tn) = Dα

x u(xi, tn) + f (xi, tn), 0 ≤ i ≤ M, 1 ≤ n ≤ N.

Acting the operator Hα on both sides of the above equation gives

Hα(C0D
γ
t u(xi, tn)) = Hα(Dα

x u(xi, tn)) + Hα f (xi, tn), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (3.5)

Define the grid functions

Un
i = u(xi, tn), f ni = f (xi, tn), 0 ≤ i ≤ M, 0 ≤ n ≤ N.
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Then by applying Lemmas 2.1 and 2.2 to (3.5), we obtain that

τ−γ

Γ (2 − γ )
Hα


Un
i −

n−1
k=1

(an−k−1 − an−k)Uk
i − an−1U0

i


= δα

x U
n
i + Hα f ni + Rn

i , (3.6)

where there exists a constant c1 such that

|Rn
i | ≤ c1(τ 2−γ

+ h4), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (3.7)

Let µ = τ γ Γ (2 − γ ). Omitting the small terms Rn
i in (3.6) and denoting by un

i the numerical approximation of Un
i , we can

construct the finite difference scheme for solving Eq. (3.1) with initial and boundary conditions of (3.3) and (3.2) as follows:

Hα


un
i −

n−1
k=1

(an−k−1 − an−k)uk
i − an−1u0

i


= µδα

x u
n
i + µHα f ni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.8)

un
0 = φ1(tn), un

M = φ2(tn), 1 ≤ n ≤ N, (3.9)

u0
i = u0(xi), 0 ≤ i ≤ M. (3.10)

3.2. Stability and convergence analysis of the difference scheme

Next, we analyze the stability and convergence for the scheme (3.8)–(3.10). Let

Vh = {v|v = (v0, v1, . . . , vM), v0 = vM = 0}

be space grid functions defined on Ωh. For any u, v ∈ Vh, we define

(u, v) = h
M−1
i=1

uivi

and corresponding discrete L2 norm

∥v∥ =


(v, v).

Some lemmas are needed for analyzing the stability and convergence of the finite difference scheme.

Lemma 3.3 ([12,35]). Let 0 < γ < 1, ak = (k + 1)1−γ
− k1−γ , k = 0, 1, . . . . Then

(1) 1 = a0 > a1 > a2 > · · · > an > · · · → 0;
(2) (1 − γ )(k + 1)−γ < ak < (1 − γ )k−γ ;
(3)

n−1
k=1(an−k−1 − an−k) + an−1 = 1.

Lemma 3.4 ([30]). For any u, v ∈ Vh, it holds that
(1) (δα

x,+u, v) = (u, δα
x,−v);

(2) (δα
x,+v, v) ≤ 0, (δα

x,−v, v) ≤ 0.

Lemma 3.5 ([30]). For any u, v ∈ Vh, it holds that
(1) (Hαu, v) = (u, Hαv);
(2) 1

3∥v∥
2

≤ (Hαv, v) ≤ ∥v∥
2.

From Lemma 3.5we know thatHα is positive definite and self-adjoint. Thereforewe can consider its square root denoted
as Qα . Obviously Qα is also a positive definite and self-adjoint operator, then we can define its inverse operator as Q−1

α .

Lemma 3.6. For any v ∈ Vh, it holds that

1
√
3
∥v∥ ≤ ∥Qαv∥ ≤ ∥v∥, ∥v∥ ≤ ∥Q−1

α v∥ ≤
√
3∥v∥. (3.11)

Proof. It is clear that

(Hαv, v) = (Q 2
αv, v) = (Qαv,Qαv) = ∥Qαv∥

2. (3.12)

Then by (2) of Lemma 3.5, we have

1
√
3
∥v∥ ≤ ∥Qαv∥ ≤ ∥v∥.

Replacing v in the above inequality by Q−1
α v, we obtain the second inequality of (3.11). �
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Now we give a prior estimate for the finite difference scheme (3.8)–(3.10).

Lemma 3.7. Suppose {vn
i } be the solution of

Hα


vn
i −

n−1
k=1

(an−k−1 − an−k)v
k
i − an−1v

0
i


= µδα

x vn
i + µpni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.13)

vn
0 = 0, vn

M = 0, 1 ≤ n ≤ N, (3.14)

v0
i = v0(xi), 0 ≤ i ≤ M, (3.15)

then

∥vn
∥ ≤

√
3


∥v0

∥ +
√
3Γ (1 − γ )T γ max

1≤l≤N
∥pl∥


,

where v0(x0) = v0(xM) = 0, ∥pl∥ =


h
M−1

i=1 (pli)2.

Proof. Taking the inner product of (3.13) with vn, we have

(Hαvn, vn) − µ(δα
x vn, vn) =

n−1
k=1

(an−k−1 − an−k)(Hαvk, vn) + an−1(Hαv0, vn) + µ(pn, vn). (3.16)

By (3.12), we know that

(Hαvn, vn) = ∥Qαvn
∥
2. (3.17)

It follows from Lemma 3.4 and Eq. (3.4) that

− µ(δα
x vn, vn) ≥ 0. (3.18)

As to the right hand side of (3.16), by the Cauchy–Schwarz inequality, we obtain

(Hαvk, vn) = (Qαvk,Qαvn) ≤ ∥Qαvk
∥ · ∥Qαvn

∥, k = 0, 1, . . . , (3.19)

and

(pn, vn) = (Q−1
α pn,Qαvn) ≤ ∥Q−1

α pn∥ · ∥Qαvn
∥. (3.20)

Substituting (3.17)–(3.20) into (3.16) and noticing that (an−k−1 − an−k) and an−1 are positive, we have

∥Qαvn
∥ ≤

n−1
k=1

(an−k−1 − an−k)∥Qαvk
∥ + an−1∥Qαv0

∥ + µ∥Q−1
α pn∥, 1 ≤ n ≤ N. (3.21)

Since µ = τ γ Γ (2 − γ ) = Γ (1 − γ )T γ (1 − γ )N−γ , according to (2) of Lemma 3.3, we have

µ < Γ (1 − γ )T γ an−1, 1 ≤ n ≤ N.

Denote

F = ∥Qαv0
∥ + Γ (1 − γ )T γ max

1≤l≤N
∥Q−1

α pl∥.

Then by (3.21), we have

∥Qαvn
∥ ≤

n−1
k=1

(an−k−1 − an−k)∥Qαvk
∥ + an−1F , 1 ≤ n ≤ N.

We use mathematical induction to prove that

∥Qαvn
∥ ≤ F , 1 ≤ n ≤ N.

Obviously, it holds for n = 1. Assume that

∥Qαvk
∥ ≤ F , 1 ≤ k ≤ n − 1.

By Lemma 3.3, we obtain

∥Qαvn
∥ ≤

n−1
k=1

(an−k−1 − an−k)∥Qαvk
∥ + an−1F ≤

n−1
k=1

(an−k−1 − an−k)F + an−1F = F .
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Furthermore, it follows from Lemma 3.6 that

∥vn
∥ ≤

√
3∥Qαvn

∥, F ≤ ∥v0
∥ +

√
3Γ (1 − γ )T γ max

1≤l≤N
∥pl∥,

which completes the proof. �

Using Lemma 3.7, we immediately have the following result.

Theorem 3.1. The difference scheme (3.8)–(3.10) is unconditionally stable to the initial values u0 and right hand side f for all
0 < γ < 1 and 1 < α ≤ 2.

Next, we consider the error estimate of (3.8)–(3.10). Let

eni = Un
i − un

i , 0 ≤ i ≤ M, 0 ≤ n ≤ N.

The following theorem of convergence holds.

Theorem 3.2. Assume that {Un
i } and {un

i } are the exact solution of problem (3.1)–(3.3) and difference scheme (3.8)–(3.10),
respectively. Then the following estimate

∥en∥ ≤ 3c1
√
b − aΓ (1 − γ )T γ (τ 2−γ

+ h4), 1 ≤ n ≤ N,

holds for all 0 < γ < 1 and 1 < α ≤ 2.

Proof. By (3.6) and (3.8), the error equations can be obtained as follows:

Hα


eni −

n−1
k=1

(an−k−1 − an−k)eki − an−1e0i


= µδα

x e
n
i + µRn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

en0 = 0, enM = 0, 1 ≤ n ≤ N,

e0i = 0, 0 ≤ i ≤ M.

It follows from Lemma 3.7 and the estimate (3.7) that

∥en∥ ≤ 3Γ (1 − γ )T γ max
1≤l≤N

∥Rl
∥ ≤ 3c1

√
b − aΓ (1 − γ )T γ (τ 2−γ

+ h4), 1 ≤ n ≤ N. �

4. Two-dimensional time–space fractional diffusion equation

In this section, we consider the following two-dimensional time–space fractional diffusion equation
C
0D

γ
t u(x, y, t) = K+

1 aD
α
x u(x, y, t) + K−

1 xD
α
b u(x, y, t) + K+

2 cD
β
y u(x, y, t)

+ K−

2 yD
β

d u(x, y, t) + f (x, y, t), (x, y, t) ∈ Ω × (0, T ], (4.1)
u(x, y, t) = φ(x, y, t), (x, y, t) ∈ ∂Ω × (0, T ], (4.2)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄, (4.3)

where C
0D

γ
t is the Caputo fractional derivative with 0 < γ < 1, aDα

x , xD
α
b and cD

β
y , yD

β

d are the left and right Riemann–
Liouville fractional derivatives with 1 < α, β ≤ 2 respectively, the domain Ω = (a, b) × (c, d). The diffusion coefficients
K+

i and K−

i for i = 1, 2 are nonnegative constants with K+

i + K−

i ≠ 0. If K+

1 ≠ 0, then φ(a, y, t) ≡ 0; if K−

1 ≠ 0, then
φ(b, y, t) ≡ 0; if K+

2 ≠ 0, then φ(x, c, t) ≡ 0; if K−

2 ≠ 0, then φ(x, d, t) ≡ 0. We note that if K+

1 = K−

1 and K+

2 = K−

2 ,
then Eq. (4.1) is essentially the two-dimensional time–space Caputo–Riesz fractional diffusion equation with constant coef-
ficients [6]. Similar to the one-dimensional case, we assume (4.1)–(4.3) have a unique solution u(x, y, t) ∈ C6,6,2

x,y,t (Ω̄×[0, T ]).
For any t ∈ [0, T ], y ∈ [c, d], define a function û(x) on R as follows:

û(x) =


u(x, y, t), x ∈ [a, b],

0, x ∉ [a, b].

For any t ∈ [0, T ], x ∈ [a, b], define a function v̂(y) on R as follows:

v̂(y) =


u(x, y, t), y ∈ [c, d],

0, y ∉ [c, d].

For any x ∈ [a, b], y ∈ [c, d], define a function

ŵ(t) = u(x, y, t), t ∈ [0, T ].

Assume that û(x), v̂(y) satisfy the conditions of Lemma 2.1 and ŵ(t) satisfies the condition of Lemma 2.2.
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4.1. Derivation of the finite difference scheme

For the spatial approximation, let h1 = (b − a)/M1, h2 = (d − c)/M2, and h = max{h1, h2} with positive integers M1
and M2. Take the mesh points xi = a + ih1, i = 0, 1, 2, . . . ,M1 and yj = c + jh2, j = 0, 1, 2, . . . ,M2. The spatial domain
Ω̄ is covered by Ω̄h = {(xi, yj)|0 ≤ i ≤ M1, 0 ≤ j ≤ M2}. Let Ωh = Ω̄h ∩ Ω and ∂Ωh = Ω̄h ∩ ∂Ω . For any grid function
v = {vi,j|0 ≤ i ≤ M1, 0 ≤ j ≤ M2}, denote

δ2
xvi,j =

vi+1,j − 2vi,j + vi−1,j

h2
1

, δ2
yvi,j =

vi,j+1 − 2vi,j + vi,j−1

h2
2

,

and

H1vi,j =


(1 + cαh2

1δ
2
x )vi,j 1 ≤ i ≤ M1 − 1, 0 ≤ j ≤ M2,

vi,j i = 0 or M1, 0 ≤ j ≤ M2,

H2vi,j =


(1 + cβh2

2δ
2
y )vi,j 1 ≤ j ≤ M2 − 1, 0 ≤ i ≤ M1,

vi,j j = 0 or M2, 0 ≤ i ≤ M1.

Similar to Eq. (3.4), we introduce the notations

Dβ
y = K+

2 cD
β
y + K−

2 yD
β

d , δβ
y = K+

2 δ
β
y,+ + K−

2 δ
β
y,−.

Considering (4.1) at the point (xi, yj, tn), we have
C
0D

γ
t u(xi, yj, tn) = Dα

x u(xi, yj, tn) + Dβ
y u(xi, yj, tn) + f (xi, yj, tn), (xi, yj) ∈ Ω̄h, 1 ≤ n ≤ N.

Performing the operators H1 and H2 on both sides of the above equation yields

H1H2(
C
0D

γ
t u(xi, yj, tn)) = H1H2(D

α
x u(xi, yj, tn)) + H1H2(D

β
y u(xi, yj, tn))

+ H1H2(f (xi, yj, tn)), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N. (4.4)

Define the grid functions

Un
i,j = u(xi, yj, tn), f ni,j = f (xi, yj, tn), (xi, yj) ∈ Ω̄h, tn ∈ Ωτ .

By applying Lemmas 2.1 and 2.2 to (4.4), then we have

H1H2D
γ
t U

n
i,j = H2δ

α
x U

n
i,j + H1δ

β
y U

n
i,j + H1H2f ni,j + Rn

i,j, (4.5)

where there exists a constant c2 such that

|Rn
i,j| ≤ c2(τ 2−γ

+ h4
1 + h4

2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N.

Adding the small term µ2δα
x δ

β
y D

γ
t Un

i,j to Eq. (4.5), we get

(H1H2 + µ2δα
x δβ

y )D
γ
t U

n
i,j = H2δ

α
x U

n
i,j + H1δ

β
y U

n
i,j + H1H2f ni,j + R̂n

i,j (4.6)

with R̂n
i,j = Rn

i,j + µ2δα
x δ

β
y D

γ
t Un

i,j. Noticing that µ = τ γ Γ (2 − γ ) and 0 < γ < 1, we have

|R̂n
i,j| ≤ c3(τmin{2γ ,2−γ }

+ h4
1 + h4

2), (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (4.7)

for a certain constant c3. Omitting the small terms R̂n
i,j in (4.6), denoting by un

i,j the numerical approximation of Un
i,j, and

exploiting Eq. (2.4), we can construct the finite difference scheme for solving Eq. (4.1) with initial and boundary conditions
of (4.3) and (4.2) as follows:

H1H2un
i,j + µ2δα

x δβ
y u

n
i,j − µH2δ

α
x u

n
i,j − µH1δ

β
y u

n
i,j =

n−1
k=1

(an−k−1 − an−k)(H1H2 + µ2δα
x δβ

y )uk
i,j

+ an−1(H1H2 + µ2δα
x δβ

y )u0
i,j + µH1H2f ni,j, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (4.8)

un
i,j = φ(xi, yj, tn), (xi, yj) ∈ ∂Ωh, 1 ≤ n ≤ N, (4.9)

u0
i,j = u0(xi, yj), (xi, yj) ∈ Ω̄h. (4.10)

Note that Eq. (4.8) can be factorized as

(H1 − µδα
x )(H2 − µδβ

y )un
i,j =

n−1
k=1

(an−k−1 − an−k)(H1H2 + µ2δα
x δβ

y )uk
i,j

+ an−1(H1H2 + µ2δα
x δβ

y )u0
i,j + µH1H2f ni,j, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N.
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Introducing an intermediate variable ûn
i,j, we obtain the following ADI scheme:

(H1 − µδα
x )ûn

i,j =

n−1
k=1

(an−k−1 − an−k)(H1H2 + µ2δα
x δβ

y )uk
i,j + an−1(H1H2 + µ2δα

x δβ
y )u0

i,j + µH1H2f ni,j, (4.11)

(H2 − µδβ
y )un

i,j = ûn
i,j. (4.12)

We remark thatwhen ûn
i,j in (4.11) for 1 ≤ i ≤ M1−1 and fixed j are solved, the boundary values ûn

0,j and ûn
M1,j

are determined
by (4.12) for i = 0 and i = M1, respectively.

4.2. Stability and convergence analysis of the difference scheme

In the following, we give the stability and convergence analysis for the scheme (4.8)–(4.10). Similar to the one-
dimensional case, let

Vh = {v|v = {vi,j} is a grid function on Ω̄h and vi,j = 0 if (xi, yj) ∈ ∂Ωh}.

For any u, v ∈ Vh, we define

(u, v) = h1h2

M1−1
i=1

M2−1
j=1

ui,jvi,j,

and corresponding discrete L2 norm

∥v∥ =


(v, v).

In light of Lemma 3.5, the operators H1 and H2 are positive definite and self-adjoint. Following the argument in [30], we
consider their square roots denoted byQ1 andQ2 respectively. ObviouslyQ1 andQ2 are also positive definite and self-adjoint,
therefore we can define their inverse operators as Q−1

1 and Q−1
2 respectively. For those operators, the following results hold.

Lemma 4.8. For any v ∈ Vh, it holds that

1
3
∥v∥ ≤ ∥Q1Q2v∥ ≤ ∥v∥, ∥v∥ ≤ ∥Q−1

1 Q−1
2 v∥ ≤ 3∥v∥. (4.13)

Proof. Noticing the commutativity of the operators Q1 and Q2, we have

(H1H2v, v) = (Q 2
1 Q

2
2 v, v) = (Q1Q2v,Q1Q2v) = ∥Q1Q2v∥

2.

On the other hand, similar to Lemmas 3.5 and 3.6, it is easy to check that

(H1H2v, v) ≤ ∥v∥
2

and

(H1H2v, v) = (H2Q1v,Q1v) ≥
1
3
(Q1v,Q1v)

=
1
3
(H1v, v) ≥

1
9
(v, v) =

1
9
∥v∥

2.

Thus,

1
3
∥v∥ ≤ ∥Q1Q2v∥ ≤ ∥v∥.

Replacing v in the above inequality by Q−1
1 Q−1

2 v, we obtain the second inequality of (4.13). �

Lemma 4.9 ([30]). For any v ∈ Vh, it holds that

(δα
x v, v) ≤ 0, (v, δα

x v) ≤ 0,

(δβ
y v, v) ≤ 0, (v, δβ

y v) ≤ 0.

With the help of Lemma 4.9, we can prove the following lemmas.

Lemma 4.10. For any v ∈ Vh, it holds that

∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )v∥ ≥ ∥(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v∥.
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Proof. According to the definition of the discrete L2 norm, we have

∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )v∥
2

= ∥

Q1Q2 + µ2Q−1

1 δα
x Q

−1
2 δβ

y − µQ1Q−1
2 δβ

y − µQ2Q−1
1 δα

x


v∥

2

=


Q1Q2 + µ2Q−1

1 δα
x Q

−1
2 δβ

y − µQ1Q−1
2 δβ

y − µQ2Q−1
1 δα

x


v,


Q1Q2 + µ2Q−1

1 δα
x Q

−1
2 δβ

y

− µQ1Q−1
2 δβ

y − µQ2Q−1
1 δα

x


v


= ∥(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v∥
2
+ µ2

∥(Q1Q−1
2 δβ

y + Q2Q−1
1 δα

x )v∥
2

− 2µ

(Q1Q2 + µ2Q−1

1 δα
x Q

−1
2 δβ

y )v, (Q1Q−1
2 δβ

y + Q2Q−1
1 δα

x )v

. (4.14)

For the third term on the right hand side of (4.14), by Lemma 4.9 and the commutativity of the operators in different spatial
direction, we get

(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v, (Q1Q−1
2 δβ

y + Q2Q−1
1 δα

x )v


=

Q1Q2v,Q1Q−1

2 δβ
y v


+


µ2Q−1

1 δα
x Q

−1
2 δβ

y v,Q1Q−1
2 δβ

y v


+

Q1Q2v,Q2Q−1

1 δα
x v


+


µ2Q−1

1 δα
x Q

−1
2 δβ

y v,Q2Q−1
1 δα

x v


=

Q1v, δβ

y Q1v

+ µ2δα

x Q
−1
2 δβ

y v,Q−1
2 δβ

y v

+


Q2v, δα

x Q2v

+ µ2δβ

y Q
−1
1 δα

x v,Q−1
1 δα

x v


≤ 0.

Therefore, it follows from (4.14) that

∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )v∥ ≥ ∥(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v∥. �

Lemma 4.11. For any v ∈ Vh, it holds that

∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )v∥ ≥
1
3
∥v∥.

Proof. It follows from Lemma 4.9 that

∥(Q1 − µQ−1
1 δα

x )v∥
2

=

(Q1 − µQ−1

1 δα
x )v, (Q1 − µQ−1

1 δα
x )v


= ∥Q1v∥

2
+ µ2

∥Q−1
1 δα

x v∥
2
− 2µ(v, δα

x v) ≥ ∥Q1v∥
2,

i.e.,

∥(Q1 − µQ−1
1 δα

x )v∥ ≥ ∥Q1v∥.

Similarly, we have

∥(Q2 − µQ−1
2 δβ

y )v∥ ≥ ∥Q2v∥.

Thus,

∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )v∥ ≥ ∥Q1(Q2 − µQ−1
2 δβ

y )v∥

= ∥(Q2 − µQ−1
2 δβ

y )Q1v∥

≥ ∥Q2Q1v∥ ≥
1
3
∥v∥.

The last inequality holds by Lemma 4.8. �

Next, we give a prior estimate for the scheme (4.8)–(4.10).

Lemma 4.12. Suppose {vn
i,j} be the solution of

H1H2v
n
i,j + µ2δα

x δβ
y vn

i,j − µH2δ
α
x vn

i,j − µH1δ
β
y vn

i,j =

n−1
k=1

(an−k−1 − an−k)(H1H2 + µ2δα
x δβ

y )vk
i,j

+ an−1(H1H2 + µ2δα
x δβ

y )v0
i,j + µpni,j, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N, (4.15)

vn
i,j = 0, (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N, (4.16)

v0
i,j = v0(xi, yj), (xi, yj) ∈ Ω̄h, (4.17)
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where pni,j|(xi,yj)∈∂Ωh = 0 for 0 ≤ n ≤ N. Then for 1 ≤ n ≤ N,

∥vn
∥ ≤ 3∥(Q1Q2 + µ2Q−1

1 δα
x Q

−1
2 δβ

y )v0
∥ + 9Γ (1 − γ )T γ max

1≤l≤N
∥pl∥. (4.18)

Proof. Eq. (4.15) can be factorized as

(H1 − µδα
x )(H2 − µδβ

y )vn
i,j =

n−1
k=1

(an−k−1 − an−k)(H1H2 + µ2δα
x δβ

y )vk
i,j

+ an−1(H1H2 + µ2δα
x δβ

y )v0
i,j + µpni,j, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N.

Multiplying Q−1
1 Q−1

2 on both sides of the above equation, we obtain

(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )vn
i,j =

n−1
k=1

(an−k−1 − an−k)(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )vk
i,j

+ an−1(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v0
i,j + µQ−1

1 Q−1
2 pni,j, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N.

Taking the discrete L2-norm on both sides and noticing that (an−k−1 − an−k) and an−1 are positive, we have

∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )vn
∥ ≤

n−1
k=1

(an−k−1 − an−k)∥(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )vk
∥

+ an−1∥(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v0
∥ + µ∥Q−1

1 Q−1
2 pn∥, 1 ≤ n ≤ N.

By Lemma 4.10, we get

∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )vn
∥ ≤

n−1
k=1

(an−k−1 − an−k)∥(Q1 − µQ−1
1 δα

x )(Q2 − µQ−1
2 δβ

y )vk
∥

+ an−1∥(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v0
∥ + µ∥Q−1

1 Q−1
2 pn∥, 1 ≤ n ≤ N. (4.19)

Recall that

µ < Γ (1 − γ )T γ an−1, 1 ≤ n ≤ N.

Denote

F = ∥(Q1Q2 + µ2Q−1
1 δα

x Q
−1
2 δβ

y )v0
∥ + Γ (1 − γ )T γ max

1≤l≤N
∥Q−1

1 Q−1
2 pl∥

and

En
= ∥(Q1 − µQ−1

1 δα
x )(Q2 − µQ−1

2 δβ
y )vn

∥, 1 ≤ n ≤ N.

It follows from (4.19) that

En
≤

n−1
k=1

(an−k−1 − an−k)Ek
+ an−1F , 1 ≤ n ≤ N.

Similar to the proof in Lemma 3.7, we can show by mathematical induction that

En
≤ F , 1 ≤ n ≤ N.

Obviously, it holds for n = 1. Assume that

Ek
≤ F , 1 ≤ k ≤ n − 1.

Then by Lemma 3.3, we have

En
≤

n−1
k=1

(an−k−1 − an−k)Ek
+ an−1F ≤

n−1
k=1

(an−k−1 − an−k)F + an−1F = F .

The estimate (4.18) is followed from Lemmas 4.11 and 4.8. �

Applying Lemma 4.12 to the difference scheme (4.8)–(4.10), we immediately obtain the following result.

Theorem 4.3. The difference scheme (4.8)–(4.10) is unconditionally stable to the initial value u0 and right hand side f for all
0 < γ < 1 and 1 < α, β ≤ 2.
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We now consider the convergence of the difference scheme (4.8)–(4.10). Let

eni,j = Un
i,j − un

i,j, (xi, yj) ∈ Ω̄h, 0 ≤ n ≤ N.

The following theorem holds.

Theorem 4.4. Assume that {Un
i,j} and {un

i,j} are the exact solution of problem (4.1)–(4.3) and difference scheme (4.8)–(4.10),
respectively. Then the following estimate

∥en∥ ≤ 9c3


(b − a)(d − c)Γ (1 − γ )T γ (τmin{2γ ,2−γ }
+ h4

1 + h4
2)

holds for 1 ≤ n ≤ N and for all 0 < γ < 1, 1 < α, β ≤ 2.

Proof. By (4.6) and (4.8), the error equations can be written as

H1H2eni,j + µ2δα
x δβ

y e
n
i,j − µH2δ

α
x e

n
i,j − µH1δ

β
y e

n
i,j =

n−1
k=1

(an−k−1 − an−k)(H1H2 + µ2δα
x δβ

y )eki,j

+ an−1(H1H2 + µ2δα
x δβ

y )e0i,j + µR̂n
i,j, (xi, yj) ∈ Ωh, 1 ≤ n ≤ N,

eni,j = 0, (xi, yj) ∈ ∂Ωh, 1 ≤ n ≤ N,

e0i,j = 0, (xi, yj) ∈ Ω̄h.

It follows from Lemma 4.12 and the estimate (4.7) that

∥en∥ ≤ 9Γ (1 − γ )T γ max
1≤l≤N

∥R̂l
∥ ≤ 9c3


(b − a)(d − c)Γ (1 − γ )T γ (τmin{2γ ,2−γ }

+ h4
1 + h4

2), 1 ≤ n ≤ N. �

5. Numerical experiments

In this section, numerical examples are given to demonstrate the efficiency of the proposed schemes.

Example 1. Consider the following equation

C
0D

γ
t u(x, t) = 0D

α
x u(x, t) + f (x, t), (x, t) ∈ (0, 1) × (0, 1], (5.1)

u(0, t) = u(1, t) = 0, t ∈ (0, 1],
u(x, 0) = 0, x ∈ [0, 1],

where the source term

f (x, t) = Γ (2 + γ )x4(1 − x)t −


Γ (5)

Γ (5 − α)
x4−α

−
Γ (6)

Γ (6 − α)
x5−α


t1+γ .

The exact solution of this problem is

u(x, t) = x4(1 − x)t1+γ .

This is a one-dimensional time–space fractional diffusion equation andwe solve it by the numerical scheme (3.8)–(3.10).
In the test, we compute the maximum norm error of the numerical solution at the last time step by

e(τ , h) = max
1≤i≤M−1

|u(xi, tN) − uN
i |,

where u(xi, tN) represents the exact solution and uN
i is the numerical solution with the mesh step sizes h and τ at the grid

point (xi, tN). We first fix the time step τ = 1/105 sufficiently small and test the convergence order in spatial direction by
letting the spatial step h vary from 1/4 to 1/64. Table 1 presents the numerical results for a variety of α and γ . The ‘‘order’’ in
this table is calculated by order = log2(e(τ , 2h)/e(τ , h)). From Table 1, we can observe the fourth order convergence rate
in the spatial direction which is consistent with our theoretical analysis.

Next, we fix the spatial step size small enough, say h = 1/103 and vary the time step τ from 1/20 to 1/320. Table 2
lists the maximum norm errors at time t = 1 and convergence orders in temporal direction for a variety of α and γ . The
convergence order for this test is calculated by order = log2(e(2τ , h)/e(τ , h)). Evidently, the numerical convergence order
in the temporal direction is O(τ 2−γ ), as in Theorem 3.2.

The following example is a two-dimensional time–space fractional diffusion equation.
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Table 1
The maximum errors at time t = 1 and convergence orders in spatial direction for Example 1,
with τ = 1/105 .

α h γ = 0.75 γ = 0.5 γ = 0.25
e(τ , h) Order e(τ , h) Order e(τ , h) Order

1.8 1/4 7.1062E−04 * 7.3336E−04 * 7.4895E−04 *
1/8 4.3563E−05 4.0279 4.4497E−05 4.0428 4.5138E−05 4.0524
1/16 2.5617E−06 4.0879 2.5970E−06 4.0988 2.6215E−06 4.1059
1/32 1.5955E−07 4.0050 1.6189E−07 4.0038 1.6420E−07 3.9969
1/64 1.0655E−08 3.9044 1.0253E−08 3.9809 1.0377E−08 3.9840

1.5 1/4 1.6118E−03 * 1.7128E−03 * 1.7820E−03 *
1/8 1.0021E−04 4.0075 1.0506E−04 4.0271 1.0837E−04 4.0394
1/16 5.9226E−06 4.0807 6.1456E−06 4.0955 6.2993E−06 4.1047
1/32 3.4513E−07 4.1010 3.5425E−07 4.1167 3.6119E−07 4.1244
1/64 2.0756E−08 4.0555 2.0487E−08 4.1120 2.0783E−08 4.1193

1.2 1/4 2.1508E−03 * 2.4747E−03 * 2.7121E−03 *
1/8 1.3696E−04 3.9731 1.5279E−04 4.0176 1.6385E−04 4.0490
1/16 8.4106E−06 4.0254 9.2364E−06 4.0481 9.8085E−06 4.0622
1/32 5.1192E−07 4.0382 5.5258E−07 4.0631 5.8390E−07 4.0702
1/64 3.4757E−08 3.8805 3.2853E−08 4.0721 3.4485E−08 4.0817

Table 2
The maximum errors at time t = 1 and convergence orders in temporal direction for Example 1,
with h = 1/103 .

γ τ α = 1.8 α = 1.5 α = 1.2
e(τ , h) Order e(τ , h) Order e(τ , h) Order

0.75 1/20 7.7499E−05 * 1.3486E−04 * 2.3375E−04 *
1/40 3.2580E−05 1.2502 5.6747E−05 1.2489 9.8473E−05 1.2471
1/80 1.3699E−05 1.2500 2.3871E−05 1.2493 4.1451E−05 1.2483
1/160 5.7599E−06 1.2499 1.0040E−05 1.2495 1.7440E−05 1.2490
1/320 2.4219E−06 1.2499 4.2221E−06 1.2497 7.3359E−06 1.2494

0.5 1/20 1.3740E−05 * 2.3787E−05 * 4.0953E−05 *
1/40 4.8685E−06 1.4968 8.4424E−06 1.4944 1.4566E−05 1.4913
1/80 1.7243E−06 1.4975 2.9936E−06 1.4958 5.1730E−06 1.4936
1/160 6.1044E−07 1.4981 1.0607E−06 1.4969 1.8348E−06 1.4953
1/320 2.1603E−07 1.4986 3.7559E−07 1.4978 6.5022E−07 1.4967

0.25 1/20 1.5510E−06 * 2.6467E−06 * 4.4742E−06 *
1/40 4.6983E−07 1.7230 8.0391E−07 1.7191 1.3636E−06 1.7142
1/80 1.4171E−07 1.7291 2.4305E−07 1.7258 4.1348E−07 1.7216
1/160 4.2602E−08 1.7340 7.3213E−08 1.7311 1.2487E−07 1.7274
1/320 1.2775E−08 1.7377 2.1991E−08 1.7352 3.7588E−08 1.7320

Example 2. Consider the equation

C
0D

γ
t u(x, y, t) = 0D

α
x u(x, y, t) + 2 xD

α
2 u(x, y, t) + 0D

β
y u(x, y, t) + 2 yD

β

2 u(x, y, t)

+ f (x, y, t), (x, y) ∈ Ω = (0, 2) × (0, 2), t ∈ (0, 1], (5.2)
u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, 1],

u(x, y, 0) = 0, (x, y) ∈ Ω̄,

where the source term

f (x, y, t) =
Γ (3 + γ )

2
x4(2 − x)4y4(2 − y)4t2 −


16Γ (5)

Γ (5 − α)


x4−α

+ 2(2 − x)4−α


−
32Γ (6)

Γ (6 − α)


x5−α

+ 2(2 − x)5−α

+

24Γ (7)
Γ (7 − α)


x6−α

+ 2(2 − x)6−α


−
8Γ (8)

Γ (8 − α)


x7−α

+ 2(2 − x)7−α

+

Γ (9)
Γ (9 − α)


x8−α

+ 2(2 − x)8−α


y4(2 − y)4t2+γ
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Table 3
The maximum errors at time t = 1 and convergence orders in spatial direction for Example 2, with
τ = 1/(2 · 105).

(α, β) h γ = 1/2 γ = 2/3 γ = 3/4
ê(τ , h1, h2) Order ê(τ , h1, h2) Order ê(τ , h1, h2) Order

(1.8, 1.6) 2/4 6.2474E−02 * 6.2419E−02 * 6.2366E−02 *
2/8 5.8221E−03 3.4236 5.7724E−03 3.4348 5.7390E−03 3.4419
2/16 4.1985E−04 3.7936 4.2221E−04 3.7731 4.1979E−04 3.7731
2/32 2.4257E−05 4.1134 2.8362E−05 3.8959 2.8308E−05 3.8904

(1.9, 1.2) 2/4 6.0875E−02 * 6.0106E−02 * 5.9651E−02 *
2/8 6.8311E−03 3.1557 6.7654E−03 3.1513 6.7261E−03 3.1487
2/16 4.7584E−04 3.8436 4.7187E−04 3.8417 4.6902E−04 3.8421
2/32 3.2362E−05 3.8781 3.1957E−05 3.8842 3.1724E−05 3.8860

(1.3, 1.4) 2/4 5.9849E−02 * 5.8255E−02 * 5.7311E−02 *
2/8 5.1187E−03 3.5475 5.0325E−03 3.5330 4.9808E−03 3.5244
2/16 3.7483E−04 3.7715 3.6861E−04 3.7711 3.6435E−04 3.7730
2/32 2.9111E−05 3.6866 2.6066E−05 3.8219 2.6054E−05 3.8058

−


16Γ (5)

Γ (5 − β)


y4−β

+ 2(2 − y)4−β

−

32Γ (6)
Γ (6 − β)


y5−β

+ 2(2 − y)5−β


+
24Γ (7)

Γ (7 − β)


y6−β

+ 2(2 − y)6−β

−

8Γ (8)
Γ (8 − β)


y7−β

+ 2(2 − y)7−β


+
Γ (9)

Γ (9 − β)


y8−β

+ 2(2 − y)8−β


x4(2 − x)4t2+γ .

The exact solution of this problem is

u(x, y, t) = x4(2 − x)4y4(2 − y)4t2+γ .

We solve this equation by the ADI scheme (4.11)–(4.12) with boundary and initial conditions of (4.9) and (4.10). For
simplicity, we let M1 = M2 = M (or equivalently h1 = h2 = h) and compute the maximum norm errors of the numerical
solution by

ê(τ , h1, h2) = max
1≤i,j≤M−1

|u(xi, yj, tN) − uN
i,j|,

where u(xi, yj, tN) refers to the exact solution and uN
i,j is the numerical solution with the mesh step sizes h and τ at the grid

point (xi, yj, tN). Similar to the one dimensional case, we first fix the time step size τ = 1/(2·105) sufficiently small and vary
the spatial step h from 2/4 to 2/32 to test the spatial convergence rate, and then fix h = 2/103 sufficiently small and vary τ
from 1/32 to 1/512 to verify the temporal convergence rate. The maximum errors and convergence orders in the temporal
and spatial directions are reported in Tables 3 and 4, respectively. The numerical results again meet our expectations. We
note that for the case with γ = 3/4 in Table 4, the convergence order in time direction seems to be 2γ which is higher than
the theoretical result min{2γ , 2 − γ }. We have tested several values of γ with γ > 2/3 and examples, and observed the
similar results. Maybe the theoretical analysis does not provide the best convergence order.Wewould investigate this point
in the future.

6. Concluding remarks

In this paper, we have derived high order finite difference schemes for one- and two-dimensional time–space fractional
sub-diffusion equations. The spatial fractional derivatives are discretized by the fourth-order quasi-compact difference
scheme [30] and temporal fractional derivatives are approximated by the L1 formula. For the two-dimensional case, we
have also established an ADI scheme based on L1 approximation. By the energy method, we have showed that the proposed
schemes are unconditionally stable and convergent. Numerical examples have been provided to illustrate the effectiveness
and accuracy of the method.

We point out that some second-order finite difference schemes have also been designedmost recently for time fractional
diffusion equations [48,14,49]. Vong et al. [50] have employed the discretization formula proposed in [48] and established a
finite difference scheme with second-order in time and fourth-order in space for (4.1)–(4.3). Nevertheless, the ADI strategy
is not considered in [50]. How to develop an ADI scheme based on those second-order approximation for the temporal
derivative and fourth-order quasi-compact difference approximation for the spatial derivative to (4.1)–(4.3) would be our
futurework. In addition,wewould also consider to extend these finite difference schemes to time–space fractional diffusion-
wave equations.
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Table 4
The maximum errors at time t = 1 and convergence orders in temporal direction for Example 2,
with h = 2/103 .

γ τ (α, β) = (1.8, 1.6) (α, β) = (1.9, 1.2) (α, β) = (1.3, 1.4)
ê(τ , h1, h2) Order ê(τ , h1, h2) Order ê(τ , h1, h2) Order

1/2 1/32 1.4013E−01 * 8.4130E−02 * 7.2981E−02 *
1/64 7.8195E−02 0.8416 4.4439E−02 0.9208 3.8557E−02 0.9205
1/128 4.1699E−02 0.9071 2.2858E−02 0.9591 1.9852E−02 0.9577
1/256 2.1601E−02 0.9490 1.1595E−02 0.9792 1.0079E−02 0.9780
1/512 1.1003E−02 0.9731 5.8403E−03 0.9894 5.0792E−03 0.9886

2/3 1/32 6.1033E−02 * 3.3530E−02 * 2.8499E−02 *
1/64 2.5818E−02 1.2412 1.3685E−02 1.2929 1.1643E−02 1.2915
1/128 1.0528E−02 1.2941 5.4920E−03 1.3172 4.6747E−03 1.3165
1/256 4.2247E−03 1.3173 2.1892E−03 1.3269 1.8637E−03 1.3267
1/512 1.6840E−03 1.3269 8.7029E−04 1.3308 7.4096E−04 1.3307

3/4 1/32 3.9396E−02 * 2.0679E−02 * 1.6995E−02 *
1/64 1.4529E−02 1.4391 7.3827E−03 1.4859 6.0112E−03 1.4993
1/128 5.1959E−03 1.4835 2.5929E−03 1.5096 2.0851E−03 1.5276
1/256 1.8348E−03 1.5018 9.0318E−04 1.5215 7.1482E−04 1.5444
1/512 6.4417E−04 1.5101 3.1282E−04 1.5297 2.4265E−04 1.5587
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