
Fast Numerical Solution for Fractional Diffusion Equations by
Exponential Quadrature RuleI

Lu Zhanga, Hai-Wei Suna,∗, Hong-Kui Pangb

aDepartment of Mathematics, University of Macau, Macao, China
bSchool of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China

Abstract

After spatial discretization to the fractional diffusion equation by the shifted Grünwald
formula, it leads to a system of ordinary differential equations, where the resulting coefficient
matrix possesses the Toeplitz-like structure. An exponential quadrature rule is employed to
solve such a system of ordinary differential equations. The convergence by the proposed
method is theoretically studied. In practical computation, the product of a Toeplitz-like
matrix exponential and a vector is calculated by the shift-invert Arnoldi method. Meanwhile,
the coefficient matrix satisfies a condition that guarantees the fast approximation by the
shift-invert Arnoldi method. Numerical results are given to demonstrate the efficiency of
the proposed method.

Keywords: Fractional diffusion equation, Toeplitz-like structure, Exponential quadrature
rule, Matrix exponential, Shift-invert Arnoldi, Preconditioned GMRES
2000 MSC: 65F10, 65L05, 65L20, 65T50, 26A33

1. Introduction

The fractional diffusion equation (FDE) is used in extensive applications, such as model-
ing chaotic dynamics of classical conservative systems [53], groundwater contaminant trans-
port [2, 3], turbulent flow [5, 41] and applications in finance [39], image processing [1] and
physics [42]. Unlike the second-order diffusion equation, there are very few cases of FDEs in
which the closed-form analytical solutions are available. Therefore, many numerical meth-
ods have been developed for these problems [4, 10, 11, 13, 26, 28, 29, 30, 43, 44, 45, 48].
Since the fractional differential operators are nonlocal, however, the stabilities of numeri-
cal approximations become very sensitive [29, 30]. Moreover, numerical methods for FDEs

IThis research was supported by research grants MYRG206(Y3-L4)-FST11-SHW from University of
Macau, 105/2012/A3 from FDCT of Macao, the National Natural Science Foundation of China under grant
11201192, the Natural Science Foundation of Jiangsu Province under grant BK2012577, and the Natural
Science Foundation for Colleges and Universities in Jiangsu Province under grant 12KJB110004.

∗Corresponding author
Email addresses: yulu7517@126.com (Lu Zhang), HSun@umac.mo (Hai-Wei Sun), panghongkui@163.com

(Hong-Kui Pang)

Preprint submitted to Journal of Computational Physics March 29, 2015

tend to generate full coefficient matrices. These features introduce significant computational
difficulties for the numerical methods for FDEs.

Meerschaert and Tadjeran in [29, 30] proposed the shifted Grünwald discretization to
approximate the FDEs which has been proved to be unconditionally stable. Later, Wang,
Wang, and Sircar in [52] showed that the resulting coefficient matrix by the Meerschaert-
Tadjeran method possesses a Toeplitz-like structure. Therefore, the computational cost for
such a matrix-vector multiplication can be carried out in O(n log n) operations using a fast
algorithm based on the fast Fourier transform (FFT), and the storage requirement is reduced
from O(n2) to O(n), where n is the number of spatial grid points in the discretization. As
the resulting coefficient matrix is still ill-conditioned [34], many fast iterative methods have
been proposed to speed up the convergence rate; see [24, 27, 32, 34, 38]. The complexity
by those methods for solving the resulting system at each time step is of order O(n log n).
Nevertheless, since the temporal accuracies of those discretized methods are only first- or
second-order, we need many time steps in the practical computation and hence the compu-
tational cost is too expensive.

In recent years, exponential integrators have been employed to various large-scale com-
putations [17]. They constitute an interesting class of higher-order accurate and stable
numerical methods for the time integration of stiff systems of differential equations. In this
paper, we develop a fast and accurate numerical method for solving the FDE by the expo-
nential integrator method. The main contributions of this work are as follows. First, we
develop the exponential integrator for the FDE, which is a higher-order temporal accurate
method. Second, we propose the shift-invert Arnoldi method for evaluating the matrix ex-
ponential in the exponential integrator. More precisely, an exponential quadrature rule is
proposed to solve the system of ordinary differential equations (ODEs) obtained by spatially
discretizing the FDE with the shifted Grünwald formula. Theoretically, we prove that the
coefficient matrix satisfies the condition which leads to the convergence of order s in time if
s non-confluent quadrature nodes are used. In computation, the product of a Toeplitz-like
matrix (the coefficient matrix) exponential and a vector is involved in the exponential inte-
grator method. Note that the norm of such a Toeplitz-like matrix is very large. Therefore,
the shift-invert Arnoldi method [23, 33, 35] is exploited to approximate the Toeplitz-like
matrix exponential. Furthermore, the coefficient matrix is proved to be sectorial and hence
the convergence of the approximation by the shift-invert Arnoldi method is independent
of the size of the matrix norm. With this advantage, the calculating for the Toeplitz-like
matrix exponential can be done in O(n log n) complexity [23]. Therefore, the computational
cost by the exponential quadrature rule to compute the FDE at each time step is of order
O(n log n). Due to the higher-order temporal accurate discretization by the exponential
quadrature rule, the number of time steps is much less than that of other lower-order tem-
poral accurate schemes. Thus, the total computational cost by the proposed method is much
cheaper than that by other lower-order methods.

The rest of this paper is organized as follows. In Section 2, we discretize the FDE spatially
to a system of ODEs. In Section 3, we propose an exponential quadrature rule to solve the
resulting system of ODEs. The shift-invert Arnoldi method is employed to approximate the

2

Mathlab
高亮

Toeplitz-like matrix exponential involved in the exponential quadrature rule in Section 4.
In Section 5, we report the numerical results to demonstrate the efficiency of the proposed
method. At last, the concluding remarks are given in Section 6.

2. Spatial discretization of FDEs

Consider an initial-boundary value problem of the FDE [30]:

∂u(x, t)

∂t
− d+(x)

∂αu(x, t)

∂+xα
− d−(x)

∂αu(x, t)

∂−xα
= f(x, t),

x ∈ (xL, xR), t ∈ (0, T], (1)

u(xL, t) = u(xR, t) = 0, t ∈ [0, T],

u(x, 0) = u0(x), x ∈ [xL, xR],

where 1 < α < 2, f(x, t) is the source term, and d±(x) ≥ 0. Here the left-sided and the

right-sided fractional derivatives ∂αu(x,t)
∂+xα

and ∂αu(x,t)
∂−xα

are defined in the Grünwald-Letnikov

form [36]:

∂αu(x, t)

∂+xα
= lim

ε→0+

1

εα

b(x−xL)/εc∑
k=0

g
(α)
k u(x− kε, t),

∂αu(x, t)

∂−xα
= lim

ε→0+

1

εα

b(xR−x)/εc∑
k=0

g
(α)
k u(x+ kε, t),

where bxc denotes the floor of x, g
(α)
0 = 1 and

g
(α)
k =

(−1)k

k!
α(α− 1) · · · (α− k + 1). (2)

The existence and uniqueness of the weak solution to (1) can be found in [25]. We note that

g
(α)
k satisfy the following proposition.

Proposition 1. (see [29, 30, 34, 52]) Let 1 < α < 2 and g
(α)
k be defined in (2). Then we

have
g

(α)
0 = 1, g

(α)
1 = −α < 0, g

(α)
2 > g

(α)
3 > · · · > 0,

∞∑
k=0

g
(α)
k = 0,

i∑
k=0

g
(α)
k < 0 for i ≥ 1.

Let n be positive integer and h = (xR − xL)/n be the size of spatial grid. We define
a spatial partition xi = xL + ih for i = 0, 1, . . . , n. Let ui(t) = u(xi, t), d±,i = d±(xi),

3

and fi(t) = f(xi, t). In [29, 30], Meerschaert and Tadjeran proposed the following shifted
Grünwald approximations,

∂αu(xi, t)

∂+xα
=

1

hα

i+1∑
k=0

g
(α)
k ui−k+1(t) +O(h),

∂αu(xi, t)

∂−xα
=

1

hα

n−i+1∑
k=0

g
(α)
k ui+k−1(t) +O(h),

(3)

where g
(α)
k are defined in (2). Using (3), the FDE (1) can be spatially semi-discretized as

dui(t)

dt
− d+,i

hα

i+1∑
k=0

g
(α)
k ui−k+1(t)− d−,i

hα

n−i+1∑
k=0

g
(α)
k ui+k−1(t) = fi(t), ui(0) = u0(xi), (4)

where 1 ≤ i ≤ n−1. Let u(t) = [u1(t), u2(t), . . . , un−1(t)]ᵀ, f(t) = [f1(t), f2(t), . . . , fn−1(t)]ᵀ,
and u0 = [u0(x1), u0(x2), . . . , u0(xn−1)]ᵀ. The above semi-discretized formulation (4) can be
further expressed in the following matrix form

du(t)

dt
+Ahu(t) = f(t), u(0) = u0, (5)

where
Ah = D+,hGα +D−,hG

ᵀ
α, (6)

with D±,h = −(1/hα) · diag(d±,1, . . . , d±,n−1) and

Gα =



g
(α)
1 g

(α)
0 0 · · · 0 0

g
(α)
2 g

(α)
1 g

(α)
0 0 · · · 0

... g
(α)
2 g

(α)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

g
(α)
n−2

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
n−1 g

(α)
n−2 · · · · · · g

(α)
2 g

(α)
1


. (7)

It is obvious that Gα is Toeplitz and Ah in (6) possesses the Toeplitz-like structure [52].
Therefore, the matrix-vector multiplication for Ah can be obtained in O(n log n) operations
by the FFT; see [34, 52] for details.

The following lemma gives an important property of Ah by Proposition 1.

Lemma 1. If d+(x)+d−(x) > 0, then the matrix Ah in (6) is strictly diagonally dominant.

4

Mathlab
高亮

Proof: From Proposition 1, we have

[Ah]ii −
n∑

j=1,j 6=i
|[Ah]ij | = − 1

hα

(d+,i + d−,i)g
(α)
1 + d+,i

i∑
j=0,j 6=1

g
(α)
j + d−,i

n−i∑
j=0,j 6=1

g
(α)
j


=

1

hα

d+,i

∞∑
j=i+1

g
(α)
j + d−,i

∞∑
j=n−i+1

g
(α)
j


≥ d+,i + d−,i

hα

∞∑
j=n+1

g
(α)
j

> 0.

3. Exponential quadrature

In this section, the exponential quadrature rule [16, 17] is employed to solve the semi-
discretized system (5).

3.1. Exponential quadrature rule

First, we consider the general linear system of ODEs,

du(t)

dt
+Au(t) = f(t), u(0) = u0, (8)

with a time-invariant matrix A. The solution of (8) at time

ti+1 = ti + ∆t, t0 = 0, i = 0, 1, . . .

is given by the variation-of-constants formula [16, 17]

u(ti+1) = exp(−∆tA)u(ti) +

∫ ∆t

0
exp

(
− (∆t− τ)A

)
f(ti + τ)dτ. (9)

If the function f within the integral is approximated by its interpolation polynomial in
certain non-confluent quadrature nodes c1, . . . , cs, the exponential quadrature rule for (9) is
obtained

ui+1 = exp(−∆tA)ui + ∆t

s∑
j=1

bj(−∆tA)f(ti + cj∆t), (10)

where the weights

bj(−∆tA) =

∫ 1

0
exp

(
−∆t(1− θ)A

)
`j(θ)dθ, (11)

5

in which `j(θ) are the Lagrange interpolation polynomials

`j(θ) =

s∏
i=1,i 6=j

θ − ci
cj − ci

, j = 1, . . . , s. (12)

In order to carry out the exponential quadrature rule, we assume the coefficient matrix
A in (8) satisfies the following assumption.
Assumption A (see [17]) There exist constants C and ω such that

‖ exp(−tA)‖ ≤ C exp(ωt), t ≥ 0, (13)

with a matrix norm ‖ · ‖.
The following theorem gives the convergence result for the exponential quadrature scheme.

Theorem 1. (see [17, Theorem 2.7 & Corollary 2.8]) Let (13) be fulfilled and f (s) ∈ L1(0, T).
Then the exponential quadrature rule (10) is convergent with order s. More precisely, the
error bound

‖ui − u(ti)‖ ≤ CT (∆t)s
∫ ti

0
‖f (s)(τ)‖dτ

holds, uniformly on 0 ≤ ti ≤ T , with a constant CT that depends on T , but is independent
of ∆t.

Therefore, we only need to verify that Ah in (6) satisfies the condition (13) of Assumption
A to obtain the desired convergence result. To this aim, we need the following lemma.

Lemma 2. (see [37]) Let A be a diagonally dominant matrix with [A]ii ≥ 0, then

‖ exp(−tA)‖∞ ≤ 1, t ≥ 0. (14)

By Lemma 1, Ah is diagonally dominant with [Ah]ii = (d+,i + d−,i)α/h
α > 0, providing

that d+(x) + d−(x) > 0. Furthermore, the condition (14) is a special case of (13) in which
C = 1 and ω = 0. By Theorem 1, we immediately have the following corollary.

Corollary 1. Let d+(x) + d−(x) > 0 and f (s) ∈ L1(0, T). Then exponential quadrature rule
(10) for solving (5) is convergent with order s; i.e.,

‖ui − u(ti)‖∞ ≤ CT (∆t)s
∫ ti

0
‖f (s)(τ)‖∞dτ

holds, uniformly on 0 ≤ ti ≤ T , with a constant CT that depends on T , but is independent
of ∆t.

6

3.2. Implementation

Now we consider the implementation of the exponential quadrature rule (10). Obviously,
the weights bj(z) in (11) are linear combinations of the entire functions [17]

ϕk(z) =

∫ 1

0
exp

(
(1− θ)z

) θk−1

(k − 1)!
dθ, k ≥ 1.

Those functions satisfy ϕk(0) = 1/k! and the recurrence relation

ϕk+1(z) =
ϕk(z)− ϕk(0)

z
, ϕ0(z) = exp(z).

In this paper, we choose s = 4 in (10) with c1 = 0, c2 = 1/3, c3 = 2/3, and c4 = 1.
Once the quadrature nodes cj are known, we can determine the Lagrange interpolation
polynomials `j(θ) in (12) for j = 1, . . . , 4. Thus, according to the formulations of weights
bj(z) and entire functions ϕk(z), we obtain the following weights by simple calculation,

b1(z) = ϕ1(z)− (11/2)ϕ2(z) + 18ϕ3(z)− 27ϕ4(z),

b2(z) = 9ϕ2(z)− 45ϕ3(z) + 81ϕ4(z),

b3(z) = −(9/2)ϕ2(z) + 36ϕ3(z)− 81ϕ4(z),

b4(z) = ϕ2(z)− 9ϕ3(z) + 27ϕ4(z).

Taking the above weights into (10) and denoting

a1 = f(ti),
a2 = −(11/2)f(ti) + 9f(ti+1/3)− (9/2)f(ti+2/3) + f(ti+1),

a3 = 18f(ti)− 45f(ti+1/3) + 36f(ti+2/3)− 9f(ti+1),

a4 = −27f(ti) + 81f(ti+1/3)− 81f(ti+2/3) + 27f(ti+1),

(15)

with ti+1/3 ≡ ti + (1/3)∆t and ti+2/3 ≡ ti + (2/3)∆t, the exponential quadrature rule (10)
(by setting A = Ah) can be written as

ui+1 =
1

6
A−1
h a4 +

1

2
A−1
h c1 +A−1

h c2 +A−1
h c3 + exp(−∆tAh)(ui −A−1

h c3), (16)

where

c1 = −∆t−1A−1
h a4 + a3, c2 = −∆t−1A−1

h c1 + a2, c3 = −∆t−1A−1
h c2 + a1.

The implementation formula (16) can be carried out as the following algorithm.

Algorithm 1: Exponential quadrature rule with order s = 4
1. Input: ui, f , ∆t, and Ah
2. Compute aj , j = 1, . . . , 4, using (15)

3. Compute v1 = A−1
h a4

4. Compute cj = − 1
∆tvj + a4−j and vj+1 = A−1

h cj for j = 1, 2, 3
5. Compute c4 = exp (−∆tAh) (ui − v4)
6. Compute ui+1 = 1

6v1 + 1
2v2 + v3 + v4 + c4

7

The main computational workloads in Algorithm 1 are at steps 3–5, where we need to solve
four linear systems for obtaining vj and one matrix exponential for getting c4, respectively.

For steps 3 and 4 in Algorithm 1, note that Ah in (6) is diagonally dominant Toeplitz-like.
There are many fast algorithms for solving such a linear system in O(n log n) operations;
see [24, 27, 32, 34, 38] for more discussions. In this paper, we employ the preconditioned
GMRES method [40] with the generalized Strang’s circulant preconditioner proposed in [24]
to solve the linear system iteratively. Strang’s circulant matrix S(B) = [sj−k]0≤j,k<n for a
real Toeplitz matrix B = [bj−k]0≤j,k<n is obtained by copying the central entries of B and
bringing them around to complete the circulant requirement [6, 7]. More precisely, the first
column of S(B) are given by

sj =


bj , 0 ≤ j < n/2,
0, j = n/2 if n is even,
bj−n, n/2 < j < n,
sj+n, 0 < −j < n.

Recall that Ah = D+,hGα +D−,hG
ᵀ
α in (6), let

d± = − 1

n− 1

n−1∑
i=1

d±,i
hα

.

As in [24], the generalized Strang circulant preconditioner for Ah is defined by

S = d+S(Gα) + d−S(Gᵀ
α). (17)

At step 5 in Algorithm 1, we need to calculate the product of a Toeplitz-like matrix
exponential and a vector. In next section, we will exploit the shift-invert Arnoldi method
[23, 33, 35] to approximate such a matrix exponential that only needs O(n log n) operations.

4. Toeplitz-like matrix exponential

4.1. Shift-invert Arnoldi method

Recently, the Krylov subspace methods have been applied to approximate the matrix
exponential [22, 23, 31, 33], especially when the matrix is with a very large size and special
structure (sparse or Toeplitz). The main idea is to approximately project the exponential of
a large matrix onto a small Krylov subspace. This can be achieved by the Arnoldi process
for nonsymmetric matrices or Lanczos process for symmetric matrices. Nevertheless, the
convergence of such a Krylov subspace method is often very slow. In [31], a shift-invert
technique is proposed to speed up the Arnoldi process.

We consider the product of matrix exponential with a vector, i.e.,

w(t) = exp(−tA)v

with an n× n matrix A, a scalar t, and a vector v. Denote In as the n× n identity matrix
and ej as jth column of In. Let γ > 0 be the shift parameter. The shift-invert Arnoldi
method for approximating exp(−tA)v is described as follows [22, 23, 31].

8

Algorithm 2: Shift-invert Arnoldi method for matrix exponential
1. Initialize: Compute v1 = v/‖v‖2
2. Iterate: Do j = 1, . . . ,m

(a) Compute v̂ := (In + γA)−1vj
(b) Do k = 1, . . . , j

i. Compute hk,j := v̂ᵀvk
ii. Compute v̂ := v̂ − hk,jvk

(c) Compute hj+1,j := ‖v̂‖2 and vj+1 := v̂/hj+1,j

3. Approximate: (a) Set Vm = [v1, . . . ,vm] and upper Hessenberg matrix Hm = [hij]m×m
(b) Compute wm(t) = βVm exp

(
− τ(H−1

m − Im)
)
e1

where τ = t/γ and β = ‖v‖2

In Algorithm 2, wm(t) is the approximation to the matrix exponential w(t) = exp(−tA)v
that a small m (� n) is expected to guarantee the cheaper computational cost. In the
following, we will study a certain condition which makes m independent of ‖tA‖2.

We first give the definition of numerical range that will come into use afterward. The
numerical range of a matrix A is defined as

W(A) ≡ {v∗Av : v ∈ Cn,v∗v = 1},

which is a compact and convex subset of C [18, p.8]. Let Σξ,ρ be the following set:

Σξ,ρ ≡
{
z ∈ C : |arg(z − ξ)| < ρ, ξ ≥ 0, 0 < ρ <

π

2

}
;

i.e., Σξ,ρ is an unbounded sector in the right-half plane with semiangle ρ < π/2 and vertex
lying on the nonnegative real axis. If W(A) ⊆ Σξ,ρ (the closure of Σξ,ρ), then A is called a
sectorial operator [22, 23, 31].

In [31], a sufficient condition is provided for error estimate in terms of W(A). According
to [22, 31] and the discussions therein, we can summarize the theoretical result in [31] by
the following lemma.

Lemma 3. (see [31, Proposition 2.1 & Proposition 3.2]) For Algorithm 2, let A be sectorial
in which W(A) ⊆ Σ0,ρ with ρ < π/2. Then the following error bound holds:

‖w(t)−wm(t)‖2 ≤
[
π sin

(π
4
− ρ

2

)]−1
Φm,

where Φm → 0 as m→∞ and its convergence is independent of ‖A‖2.

Lemma 3 states that ‖A‖2 is not involved in the error bound of the shift-invert Arnoldi
approximation wm(t) if A is sectorial. Therefore, the iteration number m is not disturbed
by ‖A‖2.

Now we consider how to calculate the Toeplitz-like matrix exponential in Algorithm 1
by the shift-invert Arnoldi method. Let A = Ah and t = ∆t in Algorithm 2. Then the
main computational cost should be at step 2(a) where m linear systems are inverted. Note

9

that Ah is diagonally dominant Toeplitz-like. So is In−1 + γAh. Therefore, as in [24] and
Section 3.2, the preconditioned GMRES method with the circulant preconditioner In−1+γS,
where S is defined in (17), can be employed to solve those linear systems. Thus, the total
computational cost for calculating wm(t) in Algorithm 2 is of O(mn log n).

The remaining issue is to prove that the Toeplitz-like matrix Ah is sectorial and hence
m is independent of ‖Ah‖2 by Lemma 3.

4.2. Error estimate for Toeplitz-like matrix exponential

We first introduce the definition of the generating function for a Toeplitz matrix. If
the entries of a Toeplitz matrix A = [ak−j]n×n are the Fourier coefficients of a 2π periodic
function p(θ) as follows,

aj =
1

2π

∫ π

−π
p(θ) exp(−ijθ)dθ, i ≡

√
−1, 1− n ≤ j ≤ n− 1,

then p(θ) is called the generating function of A. We denote the real and imaginary parts of
p by Re(p) and Im(p) respectively. The following theorem shows a sufficient condition by
the generating function to ensure that a Toeplitz matrix is sectorial.

Theorem 2. (see [23, Theorem 2.3 and Lemma 4.1]) Let p be the generating function of a
Toeplitz matrix A. If Re(p) is even, Im(p) is odd, and p satisfies the following assumptions:

Re(p) ≥ 0 and |Im(p)| ≤ CpRe(p), ∀θ ∈ [−π, π], (18)

where Cp > 0 is a constant, then A is sectorial. Moreover,

W(A) ⊆ Σ0,ρ,

where ρ = arctan(Cp) < π/2 and

Σ0,ρ =
{
z ∈ C : | arg z| ≤ ρ, 0 < ρ <

π

2

}
.

Next, we will show that the generating function of Ah satisfies the assumptions (18) in
Theorem 2 when d±(x) in (1) are constants. Some properties of the generating function of
Gα in (7) are introduced in advance before we obtain the main result.

Lemma 4. Let pα(θ) be the generating function of Gα. Then

pα(θ) =

{
|2 sin(θ/2)|α [cos (α(θ − π)/2− θ) + i sin (α(θ − π)/2− θ)] , θ ∈ [0, π],
|2 sin(θ/2)|α [cos (α(θ + π)/2− θ) + i sin (α(θ + π)/2− θ)] , θ ∈ [−π, 0).

(19)

Proof: It is obvious that the generating functions of Gα can be written as the following
series form

pα(θ) =
∞∑
k=0

g
(α)
k exp

(
i(k − 1)θ

)
.

10

On the other hand, g
(α)
k in (2) are coefficients of the power series of the function (1− z)α,

(1− z)α =
∞∑
k=0

g
(α)
k zk

for all |z| ≤ 1. Using the following relation

exp(iθ)− exp(iφ) = 2i sin

(
θ − φ

2

)
exp

(
i(θ + φ)

2

)
,

we obtain

pα(θ) =

∞∑
k=0

g
(α)
k exp

(
i(k − 1)θ

)
= exp(−iθ)

∞∑
k=0

g
(α)
k exp(ikθ)

= exp(−iθ)[1− exp(iθ)]α

= exp(−iθ)[−2i sin(θ/2) exp (iθ/2)]α,

which can be reformulated into (19).

We further consider the even and odd features of pα in the following lemma.

Lemma 5. Re(pα(θ)) ≤ 0 is even and Im(pα(θ)) is odd on [−π, π].

Proof: By the formula (19) in Lemma 4, we have

Re(pα(θ)) =

{
|2 sin(θ/2)|α cos (α(θ − π)/2− θ) , θ ∈ [0, π],
|2 sin(θ/2)|α cos (α(θ + π)/2− θ) , θ ∈ [−π, 0),

and

Im(pα(θ)) =

{
|2 sin(θ/2)|α sin (α(θ − π)/2− θ) , θ ∈ [0, π],
|2 sin(θ/2)|α sin (α(θ + π)/2− θ) , θ ∈ [−π, 0).

For θ ∈ [−π, 0), we have −θ ∈ (0, π] and

α(θ + π)/2− θ = −
(
α[(−θ)− π]/2− (−θ)

)
.

Therefore,
cos
(
α(θ + π)/2− θ

)
= cos

(
α[(−θ)− π]/2− (−θ)

)
and

sin
(
α(θ + π)/2− θ

)
= − sin

(
α[(−θ)− π]/2− (−θ)

)
.

Thus, they imply that Re(pα(θ)) = Re(pα(−θ)) is even, and Im(pα(θ)) = −Im(pα(−θ)) is
odd.

11

For θ ∈ [0, π], note that α ∈ (1, 2), we have

α(θ − π)/2− θ ∈ [−π,−π/2]. (20)

Therefore,
Re(pα(θ)) ≤ 0, θ ∈ [0, π].

The above inequality also holds for θ ∈ [−π, 0) since Re(pα(θ)) is even. We then complete
the proof.

Lemma 6. pα satisfies the following condition:∣∣∣∣ Im(pα)

Re(pα)

∣∣∣∣ ≤ tan
(
(1− α/2)π

)
, ∀θ ∈ [−π, π].

Proof: For θ ∈ [0, π], noting that α(θ − π)/2− θ ∈ [−π,−π/2] by (20), we have∣∣∣∣ Im(pα)

Re(pα)

∣∣∣∣ = | tan(α(θ − π)/2− θ)| ≤ tan
(
(1− α/2)π

)
.

By Lemma 5, the above inequality also holds for θ ∈ [−π, 0). The proof is completed.

Finally, we give the main result about the matrix Ah in this subsection.

Theorem 3. Assume that d±(x) = d± are constants with d+ +d− > 0. Then Ah is sectorial
and

W(Ah) ⊆ Σ0,ρ,

where ρ = (1− α/2)π < π/2 and

Σ0,ρ =
{
z ∈ C : | arg z| ≤ ρ, 0 < ρ <

π

2

}
.

Proof: According to the assumption, Ah can be written as

Ah = −h−α(d+Gα + d−G
ᵀ
α).

With the fact that the generating function of Gᵀ
α is pα(θ), the generating function of Ah can

be written as ph(θ) = −h−α[d+pα(θ) + d−pα(θ)]. Therefore, by Lemma 5,

Re(ph) = −h−α(d+ + d−)Re(pα) ≥ 0

is even and Im(ph) = h−α(d−−d+)Im(pα) is odd. Furthermore, using Lemma 6, noting that
|d− − d+| ≤ d+ + d−, we have∣∣∣∣ Im(ph)

Re(ph)

∣∣∣∣ =

∣∣∣∣(d− − d+)Im(pα)

(d+ + d−)Re(pα)

∣∣∣∣ ≤ tan
(
(1− α/2)π

)
,

which implies that
|Im(ph)| ≤ tan

(
(1− α/2)π

)
Re(ph).

12

According to Theorem 2, it concludes that Ah is a sectorial operator and

W(Ah) ⊆ Σ0,ρ,

where ρ = (1− α/2)π < π/2 and

Σ0,ρ =
{
z ∈ C : | arg z| ≤ ρ, 0 < ρ <

π

2

}
.

By Theorem 3 and Lemma 3, it is resulted that the error bound of the shift-invert Arnoldi
approximation is independent of ‖Ah‖2 which is related to n. This implies that the number
of iteration m in Algorithm 2 is independent of mesh size h or the number of spatial nodes
n. Therefore, the Toeplitz-like matrix exponential can be done in O(mn log n) with small
m.

5. Numerical experiments

In the following numerical tests, we employ the exponential quadrature rule to solve the
FDE numerically. As comparisons, we also carry out the implicit finite difference scheme
[24, 34] to solve the FDE. In this scheme, the FDE is discretized in space by the shifted
Grünwald formula (3) and in time using an implicit Euler method. Then, one has to solve a
Toeplitz-like linear systems in each time step of the implicit finite difference scheme. For the
linear systems appearing in the implementation of above both methods, the preconditioned
GMRES method with the generalized Strang circulant preconditioner (17) is utilized to solve
them. Moreover, the stopping criterion for solving those linear systems is

‖r(k)‖2
‖r(0)‖2

< 10−7,

where r(k) is the residual vector of linear systems after k iterations.
For all tables, “M” denotes the number of time steps for the implicit finite difference

scheme, “∆t” denotes the time-step size for the exponential quadrature rule, “Error” denotes
the error between the true solution and the approximation under the infinity norm at the last
time step, and “CPU” denotes the total CPU time in seconds for solving the whole discretized
systems. For the shift parameter γ in Algorithm 2, we choose γ = ∆t/10 which is suggested
in [22, 23]. The iteration number of the shift-invert Arnoldi process (i.e., Algorithm 2) is set
to m = 7 in all examples. We also denote “EQR” as the exponential quadrature rule (16) and
“IFD” as the implicit finite difference scheme proposed in [24], respectively. All numerical
experiments are run in MATLAB 7.11(R2010a) on a PC with Intel(R) Core(TM)i7-2600
3.40 GHz processor and 16.0 GB RAM.

13

Mathlab
高亮

Mathlab
高亮

Example 1. (see [47, 54]) In this example, we consider the FDE (1) whose data are
given as follows: α = 1.5, (xL, xR) = (0, 1), T = 1, d+(x) = d−(x) = 1, and the source term

f(x, t) = − exp(−t)
{
x3(1− x)3 +

Γ(4)

Γ(4− α)

[
x3−α + (1− x)3−α

]
− 3Γ(5)

Γ(5− α)

[
x4−α + (1− x)4−α

]
+

3Γ(6)

Γ(6− α)

[
x5−α + (1− x)5−α

]
− Γ(7)

Γ(7− α)

[
x6−α + (1− x)6−α

]}
.

The initial condition is chosen as

u(x, 0) = x3(1− x)3.

The true solution to the corresponding FDE is given by

u(x, t) = exp(−t)x3(1− x)3.

Table 1: Comparisons for Example 1 by the EQR and the IFD, respectively.

EQR IFD
n ∆t CPU Error M CPU Error
26 0.02 1.1244e-4 26 0.06 1.0800e-4

27 T 0.03 5.6542e-5 27 0.14 5.5273e-5

28 0.04 2.7604e-5 28 0.32 2.7948e-5

29 0.07 1.4777e-5 29 1.23 1.4050e-5

210 0.09 7.3622e-6 210 3.64 7.0437e-6

211 0.24 3.6404e-6 211 20.10 3.5263e-6

212 T/2 0.29 1.7760e-6 212 35.49 1.7642e-6

213 1.03 8.4287e-7 213 282.10 8.8233e-7

214 2.73 3.7611e-7 214 1558.24 4.4116e-7

215 4.09 1.4268e-7 215 3666.23 2.2052e-7

In order to get the similar magnitude of error, we let ∆t = T for n = 26, 27, 28 and
∆t = T/2 for n = 29, . . . , 215 in the exponential quadrature rule (16) and M = n for the
implicit finite difference scheme in this example. Table 1 reports the numerical results.
The implicit finite difference scheme in [24, 34] is a temporal first-order scheme, while our
new method is a temporal higher-order accurate scheme. Therefore, to achieve the similar
magnitude of error, the number of time steps of the implicit finite difference scheme is much
larger than that of the exponential quadrature rule. Correspondingly, we see from Table 1
that the CPU times of the proposed method are much less than those of the implicit finite

14

Mathlab
高亮

difference scheme, especially when n is very large. Moreover, the favorable numerical results
can be obtained with the exponential quadrature rule only after several time steps.

Example 2. (see [24, 34, 52]) In this example, we consider the FDE (1) whose data
are given as follows: α = 1.3, (xL, xR) = (0, 2), T = 1, d+(x) = Γ(3 − α)xα, d−(x) =
Γ(3− α)(2− x)α, and the source term

f(x, t) = −32 exp(−t)
{
x2 +

1

8
(2− x)2(8 + x2)− 3

3− α

[
x3 + (2− x)3

]
+

3

(4− α)(3− α)

[
x4 + (2− x)4

]}
.

The initial condition is chosen as

u(x, 0) = 4x2(2− x)2.

The true solution to the corresponding FDE is given by

u(x, t) = 4 exp(−t)x2(2− x)2.

Table 2: Comparisons for Example 2 by the EQR and the IFD, respectively.

EQR IFD
n ∆t CPU Error M CPU Error
26 0.06 2.4581e-2 25 0.09 2.7287e-2

27 T 0.07 1.2452e-2 26 0.23 1.3738e-2

28 0.12 6.3198e-3 27 0.52 6.8923e-3

29 0.45 3.1010e-3 28 1.85 3.4520e-3

210 0.68 1.5554e-3 29 5.58 1.7275e-3

211 1.96 7.8159e-4 210 29.34 8.6412e-4

212 T/2 2.29 3.9444e-4 211 48.69 4.3209e-4

213 8.56 2.0086e-4 212 365.39 2.1597e-4

214 22.92 1.0419e-4 213 1784.74 1.0791e-4

215 33.37 5.6088e-5 214 4284.43 5.3565e-5

For the same reason as Example 1, we also set ∆t = T for n = 26, 27, 28 and ∆t = T/2 for
n = 29, . . . , 215 in the exponential quadrature rule (16). The numerical results are presented
in Table 2. It shows that the CPU times by the proposed method are much less than those
by the implicit finite difference scheme, especially when n gets larger. Since the exponential
quadrature rule used here is a higher-order method in time compared with the implicit finite
difference scheme, better numerical results can be obtained only after a few time steps.

15

Table 3: Comparisons for Example 2 by the EQR and the IFD, respectively.

EQR IFD
n ∆t CPU Error M CPU Error
25 T 0.05 1.3633e-2 28 0.21 1.4772e-2

26 0.08 3.6019e-3 210 0.71 3.7197e-3

27 T/2 0.19 8.5809e-4 212 2.60 9.2719e-4

28 0.22 2.2355e-4 214 11.77 2.3385e-4

We remark that our new method of this paper is still valid if the left-sided and the right-
sided fractional derivatives in (1) are discretized by an existing second-order discretization
scheme given in [9, 12]. Table 3 reports the numerical results in this case.

Example 1 and 2 show the efficiency by the exponential quadrature rule (16) to solve the
one dimensional FDE. Analogously, the proposed method also can be extended to solve the
two dimensional FDE. In the following, we study the two dimensional FDE.

Example 3. We consider the two dimensional FDE as follows:

∂u(x, y, t)

∂t
− d+(x, y)

∂αu(x, y, t)

∂+xα
− d−(x, y)

∂αu(x, y, t)

∂−xα

−e+(x, y)
∂βu(x, y, t)

∂+yβ
− e−(x, y)

∂βu(x, y, t)

∂−yβ
= f(x, y, t),

(x, y) ∈ Ω ≡ (xL, xR)× (yL, yR), t ∈ (0, T],

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄.

In the numerical tests, we choose α = 1.8, β = 1.6, Ω = (0, 1) × (0, 1), T = 1, d+(x, y) =
xα−1y, d−(x, y) = (1 − x)α−1y, e+(x, y) = xyβ−1, e−(x, y) = x(1 − y)β−1, and the source
term

f(x, y, t) = − exp(−t)x2(1− x)2y2(1− y)2

− exp(−t)
{

Γ(5)

Γ(5− α)

[
x3 + (1− x)3

]
− 2Γ(4)

Γ(4− α)

[
x2 + (1− x)2

]
+

Γ(3)

Γ(3− α)

}
y3(1− y)2

− exp(−t)x3(1− x)2

{
Γ(5)

Γ(5− β)

[
y3 + (1− y)3

]
− 2Γ(4)

Γ(4− β)

[
y2 + (1− y)2

]
+

Γ(3)

Γ(3− β)

}
.

The initial condition is chosen as

u(x, y, 0) = x2(1− x)2y2(1− y)2.

The true solution to the corresponding FDE is given by

u(x, y, t) = exp(−t)x2(1− x)2y2(1− y)2.

16

Mathlab
高亮

Assume the numbers of spatial discretization points in x-direction and y-direction are n1

and n2, respectively. Let h1 = (xR − xL)/n1 and h2 = (yR − yL)/n2 be the sizes of spatial
grids and denote d±i,j = d±(xi, yj), e

±
i,j = e±(xi, yj). For convenience, we denote N1 = n1− 1

and N2 = n2 − 1. Let D±j and E±j be diagonal matrices defined by

D±j = − 1

hα1
· diag(d±1,j , . . . , d

±
N1,j

), E±j = − 1

hβ2
· diag(e±1,j , . . . , e

±
N1,j

),

where 1 ≤ j ≤ N2. Then the coefficient matrix in this example is given by

Ah1,h2 = Ax +Ay,

with

Ax =


D+

1

D+
2

. . .

D+
N2

 (IN2 ⊗Gα) +


D−1

D−2
. . .

D−N2

 (IN2 ⊗Gᵀ
α),

and

Ay =


E+

1

E+
2

. . .

E+
N2

 (Gβ ⊗ IN1) +


E−1

E−2
. . .

E−N2

 (Gᵀ
β ⊗ IN1).

Here “⊗” denotes the Kronecker product.
Similar to (17), let

Sh1,h2 = IN2 ⊗
[
d+S(Gα) + d−S(Gᵀ

α)
]

+
[
e+S(Gβ) + e−S(Gᵀ

β)
]
⊗ IN1 ,

where

d± = − 1

N1N2

N2∑
j=1

N1∑
i=1

d±i,j
hα1

, e± = − 1

N1N2

N2∑
j=1

N1∑
i=1

e±i,j

hβ2
.

Then Sh1,h2 is a block circulant matrix with circulant blocks. As a result, we consider Sh1,h2
as the preconditioner of Ah1,h2 , and IN1N2 +γSh1,h2 as the preconditioner of IN1N2 +γAh1,h2 .
Note that the product of S−1

h1,h2
and a vector requires O(N1N2(logN1 + logN2)) operations

by two dimensional FFT; see [6, 21].
We let ∆t = T in the exponential quadrature rule (16) and M = n1 = n2 in the implicit

finite difference scheme. The numerical test is reported in Table 4. From this table, we
see that the CPU times of the proposed method are less than those by the implicit finite
difference scheme due to the higher-order temporal accurate discretization by the exponential
quadrature rule.

17

Table 4: Comparisons for Example 3 by the EQR and the IFD, respectively.

EQR IFD
n1 = n2 ∆t CPU Error M CPU Error

25 0.88 1.6151e-5 25 1.42 1.7371e-5

26 T 2.91 7.8767e-6 26 6.54 8.3592e-6

27 24.25 3.9356e-6 27 74.97 4.1075e-6

28 135.43 2.0186e-6 28 525.70 2.0368e-6

6. Concluding remarks

In this paper, we have developed an exponential quadrature rule to solve the space-
discretized system of the FDE. The convergence of the proposed method has been studied.
Theoretical analysis reveals that the exponential quadrature rule is convergent of order s
if s non-confluent quadrature nodes are used. In implementation, the Toeplitz-like matrix
exponential, which is involved in the exponential integrator method, is approximated by
the shift-invert Arnoldi method. The discretized matrix is proved to be sectorial when
d±(x) are constants, which ensures the error bound of the shift-invert Arnoldi approximation
is independent of the discretized matrix norm. Numerical examples have been given to
illustrate the efficiency and robustness of the proposed method.

Generally, the exponential quadrature rule of this paper is used to solve linear parabolic
problems (8), and the matrix A is time-invariant. Therefore, the method developed in the
current paper can be extended to solve the three-dimensional problem [49]. If the matrix A
is time-dependent, Magnus integrators have been studied for this problem; please refer to
[14, 15] for details. However, the exponential quadrature rule in this present paper cannot
be extended to the fractional partial differential equations [19, 20] or other types of non-local
models [46, 50, 51], since these problems do not belong to linear parabolic problems (8).

We also want to remark that although this current paper focus on using the first-order
discretization in space, the exponential quadrature rule of this paper is still valid if applying
the higher-order discretizations, e.g., [8, 9, 12]; in fact the validity is already verified numer-
ically in Table 3, where we exploit the second-order discretization in [9, 12]. In our future
consideration, we will extend the exponential integrator methods, with the Runge-Kutta
methods, to solve the semilinear problems.

Acknowledgements

The authors wish to thank the referees for their many constructive comments and sug-
gestions on improving the paper.

18

Mathlab
高亮

Mathlab
高亮

References

[1] J. Bai, X. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans.
Image Proc. 16 (2007) 2492–2502.

[2] D. Benson, S.W. Wheatcraft, M.M. Meerschaert, Application of a fractional advection-
dispersion equation, Water Resour. Res. 36 (2000) 1403–1413.

[3] D. Benson, S.W. Wheatcraft, M.M. Meerschaert, The fractional-order governing equa-
tion of Lévy motion, Water Resour. Res. 36 (2000) 1413–1423.

[4] B. Beumer, M. Kovács, M.M. Meerschaert, Numerical solutions for fractional reaction-
diffusion equations, Comput. Math. Appl. 55 (2008) 2212–2226.

[5] B.A. Carreras, V.E. Lynch, G.M. Zaslavsky, Anomalous diffusion and exit time distribu-
tion of particle tracers in plasma turbulence model, Phys. Plasma 8 (2001) 5096–5103.

[6] R. Chan, X. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia,
2007.

[7] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38
(1996) 427–482.

[8] M. Chen, W. Deng, Fourth Order Difference Approximations for Space Riemann-
Liouville Derivatives Based on Weighted and Shifted Lubich Difference Operators, Com-
mun. Comput. Phys. 16 (2014) 516–540.

[9] M. Chen, Y. Wang, X. Cheng, W. Deng, Second-order LOD multigrid method for
multidimensional Riesz fractional diffusion equation, BIT 54 (2014) 623–647.

[10] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Com-
put. Phys. 228 (2009) 7792–7804.

[11] W. Deng, Finite element method for the space and time fractional Fokker-Planck equa-
tion, SIAM J. Numer. Anal. 47 (2008) 204–226.

[12] W. Deng, M. Chen, Efficient Numerical Algorithms for Three-Dimensional Fractional
Partial Differential Equations, J. Comp. Math. 32 (2014) 371–391.

[13] V.J. Ervin, N. Heuer, J.P. Roop, Numerical approximation of a time dependent, non-
linear, space-fractional diffusion equation, SIAM J. Numer. Anal. 45 (2007) 572–591.

[14] C. González, A. Ostermann, M. Thalhammer, A second-order Magnus-type integrator
for nonautonomous parabolic problems, J. Comput. Appl. Math. 189 (2006) 142-156.

[15] C. González, M. Thalhammer, A second-order Magnus-type integrator for quasi-linear
parabolic problems, Math. Comp. 76 (2007) 205-231.

19

[16] M. Hochbruck, A. Ostermann, Exponential Runge-Kutta methods for parabolic prob-
lems, Appl. Numer. Math. 53 (2005) 323–339.

[17] M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numer. 19 (2010) 209–286.

[18] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

[19] J. Jia, H. Wang, Fast finite difference methods for space-fractional diffusion equations
with fractional derivative boundary conditions, J. Comput. Phys., Available online 19
August 2014.

[20] J. Jia, C. Wang, H. Wang, A fast locally refined method for a space-fractional diffusion
equation, # IE0147, ICFDA’14 Catania, 23–25 June 2014 Copyright 2014 IEEE ISBN
978-1-4799-2590-2.

[21] X. Jin, Developments and Applications of Block Toeplitz Iterative Solvers, Science Press
& Kluwer Academic Publishers, Beijing/Dordrecht, The Netherlands, 2002.

[22] S. Lee, X. Liu, H. Sun, Fast exponential time integration scheme for option pricing with
jumps, Numer. Linear Algebra Appl. 19 (2012) 87–101.

[23] S. Lee, H. Pang, H. Sun, Shift-invert Arnoldi approximation to the Toeplitz matrix
exponential, SIAM J. Sci. Comput. 32 (2010) 774–792.

[24] S. Lei, H. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput.
Phys. 242 (2013) 715–725.

[25] X. Li, C. Xu, The existence and uniqueness of the week solution of the space-time
fractional diffusion equation and a spectral method approximation, Commun. Comput.
Phys. 8 (2010) 1016–1051.

[26] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion
equation, J. Comput. Phys. 225 (2007) 1533–1552.

[27] F. Lin, S. Yang, X. Jin, Preconditioned iterative methods for fractional diffusion equa-
tion, J. Comput. Phys. 256 (2014) 109–117.

[28] M.M. Meerschaert, H.P. Scheffler, C. Tadjeran, Finite difference methods for two-
dimensional fractional dispersion equation, J. Comput. Phys. 211 (2006) 249–261.

[29] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional
advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004) 65–77.

[30] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-
fractional partial differential equations, Appl. Numer. Math. 56 (2006) 80–90.

[31] I. Moret, P. Novati, RD-rational approximations of the matrix exponential, BIT 44
(2004) 595–615.

20

[32] J. Pan, R. Ke, M. Ng, H. Sun, Preconditioning techniques for diagonal-times-Toeplitz
matrices in fractional diffusion equations, SIAM J. Sci. Comput. 36 (2014) A2698-
A2719.

[33] H. Pang, H. Sun, Shift-invert Lanczos method for the symmetric positive semidefinite
Toeplitz matrix exponential, Numer. Linear Algebra Appl. 18 (2011) 603–614.

[34] H. Pang, H. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys.
231 (2012) 693–703.

[35] H. Pang, H. Sun, Fast exponential time integration for pricing options in stochastic
volatility jump diffusion models, East Asia Journal of Applied Mathematics 4 (2014)
53–68.

[36] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[37] D.L. Powers, R. Jeltsch, Problem 74-5: On the norm of a matrix exponential, SIAM
Rev. 17 (1975) 174–176.

[38] W. Qu, S. Lei, S. Vong, Circulant and skew-circulant splitting iteration for fractional
advection-diffusion equations, Int. J. Comput. Math. 91 (2014) 2232–2242.

[39] M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency finan-
cial data: an empirical study, Phys. A 314 (2002) 749–755.

[40] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.

[41] M.F. Shlesinger, B.J. West, J. Klafter, Lévy dynamics of enhanced diffusion: application
to turbulence, Phys. Rev. Lett. 58 (1987) 1100–1103.

[42] I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today Nov. 55 (2002)
48–54.

[43] E. Sousa, Finite difference approximates for a fractional advection diffusion problem, J.
Comput. Phys. 228 (2009) 4038–4054.

[44] L. Su, W. Wang, Z. Yang, Finite difference approximations for the fractional advection-
diffusion equation, Phys. Lett. A 373 (2009) 4405–4408.

[45] C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, A second-order accurate numerical ap-
proximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006) 205–213.

[46] H. Tian, H. Wang, W. Wang, An efficient collocation method for a non-local diffusion
model, Int. J. Numer. Anal. Model. 10 (2013) 815–825.

[47] W. Tian, H. Zhou, W. Deng, A class of second order difference approximations for
solving space fractional diffusion equations, Math. Comp. in press (arXiv:1201.5949
[math.NA]).

21

[48] H. Wang, T. Basu, A fast finite difference method for two-dimensional space-fractional
diffusion equations, SIAM J. Sci. Comput. 34 (2012) A2444–A2458.

[49] H. Wang, N. Du, A fast finite difference method for three-dimensional time-dependent
space-fractional diffusion equations and its efficient implementation, J. Comput. Phys.
253 (2013) 50–63.

[50] H. Wang, H. Tian, A fast Galerkin method with efficient matrix assembly and storage
for a peridynamic model, J. Comput. Phys. 231 (2012) 7730–7738.

[51] H. Wang, H. Tian, A fast and faithful collocation method with efficient matrix assembly
for a two dimensional nonlocal diffusion model, Comput. Methods Appl. Mech. Engrg.
273 (2014) 19–36.

[52] H. Wang, K. Wang, T. Sircar, A direct O(N log2N) finite difference method for frac-
tional diffusion equations, J. Comput. Phys. 229 (2010) 8095–8104.

[53] G.M. Zaslavsky, D. Stevens, H. Weitzner, Self-similar transport in incomplete chaos,
Phys. Rev. E 48 (1993) 1683–1694.

[54] H. Zhou, W. Tian, W. Deng, Quasi-compact finite difference schemes for space fractional
diffusion equations, J. Sci. Comput. 56 (2013) 45-66.

22

