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Abstract

Based on the combined compact difference scheme, an alternating direction implicit method
is proposed for solving two-dimensional cubic nonlinear Schrödinger equations. The proposed
method is sixth-order accurate in space and second-order accurate in time. The linear Fourier
analysis method is exploited to study the stability of the proposed method. The efficiency
and accuracy of the proposed method are tested numerically, and the common solution
pattern of the nonlinear Schrödinger equation is also illustrated using relevant examples
known in the literature.
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1. Introduction

In this paper, we study the following two-dimensional cubic nonlinear Schrödinger equa-
tion (NLSE),

i
∂u

∂t
+ a

∂2u

∂x2
+ b

∂2u

∂y2
+ q|u|2u+ v(x, y)u = 0, (x, y, t) ∈ Ω× (0, T ], (1)

accompanied with the following initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (2)

and the Dirichlet boundary condition

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ], (3)

IThe research was partially supported by the research grant 005/2012/A1 from FDCT of Macao, and
MYRG206 (Y3-L4)-FST11-SHW, from University of Macau.

∗Corresponding author
Email addresses: reachless@live.cn (Leonard Z. Li), HSun@umac.mo (Hai-Wei Sun ), fstsct@umac.mo

(Sik-Chung Tam)

Preprint submitted to Computer Physics Communications September 11, 2014



within the rectangular domain Ω = [Lx, Rx]× [Ly, Ry] ∈ R2 and computational time interval
(0, T ], where i ≡

√
−1 is the complex unit, a, b, and q are real constants, ∂Ω is the boundary

of Ω, u0 and g are given sufficiently smooth functions, v is an arbitrary real-valued potential
function, and u(x, y, t) is an unknown complex-valued wave function which describes the
motion of soliton(s) [5].

The NLSE is one of the most important equations of mathematical physics and it has been
widely used to model various nonlinear physical phenomena, such as underwater acoustics,
quantum mechanics, plasma physics, bimolecular dynamics, nonlinear optics, and electro-
magnetic wave propagation [15]. The cubic NLSE is one of the most important topics of the
NLSE, and is also known as Gross-Pitaevskii equation (GPE) which plays a fundamental
role in modeling the hydrodynamics of Bose-Einstein condensate [12, 14, 9, 2, 3, 27, 28, 1].

Recently, due to the wide use of the NLSE, numerous researchers show intensive interest
in developing numerical methods to solve this kind of equation, including finite difference
methods [25, 16, 8]. The alternating direction implicit (ADI) method, which was first pro-
posed by Peaceman and Rachford [18], and hereafter referred to as PRADI, is one of the
involved methods, and famous for its high efficiency. The ADI method turns the original
multi-dimensional problem into a collection of one-dimensional problems, which generally
only requires the handle of tridiagonal systems, thus leads to its good reputation of high
efficiency. Nevertheless, the spatially second-order accuracy of the original ADI method
limits its application in more and more challenging computational problems. To increase
the spatial accuracy of the ADI method, one way is to exploit the higher order compact
(HOC) difference schemes [13, 22, 21], which have been widely utilized due to their higher-
order accuracies while no extra difficulty is posed comparing with the conventional difference
schemes. In [11], based on the standard fourth-order Padé scheme, Gao and Xie developed
an ADI method, which is fourth-order accurate in space and second-order accurate in time,
to solve two-dimensional Schrödinger equations. Lately, Xu and Zhang [26] proposed a
spatially fourth-order and temporally second-order accurate HOC-ADI method to solve the
two-dimensional cubic NLSE. In [2, 1], the authors compared and reviewed different numer-
ical methods for solving NLSE/GPE.

The combined compact difference (CCD) scheme, first proposed by Chu and Fan [7] in
1998, was intended to solve one-dimensional or two-dimensional steady convection-diffusion
equations. The three-point sixth-order CCD method is an implicit scheme with a triple-
tridiagonal matrix as its coefficient matrix, which can be solved with triple-forward elimi-
nation and triple-backward substitution [7]. When the CCD scheme is applied to solve an
equation, we do not discretize the first and second derivatives in the original equation, but
use two appropriate formulae to approximate them respectively. Hence the unknown variable
in the equation is solved jointly with its first and second derivatives in a triple-tridiagonal
system. Actually, this distinguishing feature, renders the CCD scheme especially suitable for
solving nonlinear equations as well as the equations with variable coefficients. Since equation
(1) is a nonlinear equation, it is reasonable for us to take advantage of the CCD scheme to
solve it.

A CCD-ADI method [19] is proposed for the two-dimensional unsteady convection-
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diffusion equation, by combining the CCD scheme and the ADI method together. The
CCD-ADI method is a D’Yakonov ADI-like scheme, which requires one to determine the
boundary condition of the intermediate variable based on the second equation of the CCD-
ADI method in a complicated way, including an extra step to calculate the partial derivatives
with respect to y deliberately. Though the handling of the intermediate boundary condition
of the D’Yakonov ADI-like scheme improves accuracy, it extends the computational time
significantly.

In this paper, we develop a CCD-PRADI method by employing the CCD and ADI method
to solve the two-dimensional cubic NLSE. To circumvent the inconvenience in determining
the boundary condition of the intermediate variable, we exploit the PRADI scheme in the
derivation of the CCD-PRADI method; we also simply take the intermediate boundary con-
dition by calculating the Dirichlet boundary condition (3) in the implementation. Although
it is not encouraged to take the intermediate boundary condition by this manner in many
literatures [10], such a seemingly clumsy handling turns out to be effective and satisfactory,
due to the high accuracy of the CCD method. In the first step of the derivation of our CCD-
PRADI method, we discretize the original equation temporally with the Crank-Nicolson
scheme and then factorize the resulting semi-discretization into the PRADI scheme with
two one-dimensional problems. In the second step, the CCD method is exploited to solve
the two one-dimensional problems with the efficient triple-forward elimination and triple-
backward substitution. An elaborate algorithm is proposed to guide the implementation of
the CCD-PRADI method for solving the two-dimensional cubic NLSE. The CCD-PRADI
method is sixth-order accurate in space and second-order accurate in time. If the constants
a, b, and q are not too big, i.e., equation (1) without singularity, then, as in [6], we can
employ the linear Fourier analysis method [26, 5, 4] to study the stability of the proposed
method.

The rest of this paper is organized as follows. In section 2, we propose a CCD-PRADI
method for the two-dimensional cubic NLSE. The linear stability analysis for the proposed
CCD-PRADI method is studied in section 3. Section 4 contains some numerical examples
to show the performance of the proposed method, as well as the common solution pattern of
the NLSE. Some remarks on the proposed method are further elaborated in the last section.

2. CCD-PRADI method for the cubic NLSE

In this section, we first discretize equation (1) temporally and then apply the CCD
scheme to obtain the full discretization to give rise to the CCD-PRADI method for the
cubic NLSE. Due to the nonlinearity of (1), the CCD-PRADI method requires an iterative
process for each unknown time level to produce an approximate solution.

For convenience, we rewrite equation (1) as the following form

∂u

∂t
− ia

∂2u

∂x2
− ib

∂2u

∂y2
− iq|u|2u− iv(x, y)u = 0. (4)

In the first place, we divide the time interval [0, T ] into N equally sub-intervals, with the
time step ∆t = T/N and tn = n∆t, n = 0, 1, . . . , N . Let ϕα be the approximation of
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ϕ(x, y, α∆t) for an arbitrary function ϕ(x, y, t) with positive real number α. Applying the
Crank-Nicolson scheme to discretize the temporal derivative in (4) around t = tn +

1
2∆t, we

have

un+1 − un

∆t
= ia

∂2un+1

∂x2 + ∂2un

∂x2

2
+ ib

∂2un+1

∂y2
+ ∂2un

∂y2

2

+iq
|un+1|2un+1 + |un|2un

2
+ iv

un+1 + un

2
+O(∆t2).

Note that ϕn+ 1
2 =

ϕn+1 + ϕn

2
+O(∆t2), we obtain following equation which is equivalent to

the above one,

un+1 − un

∆t
= ia

∂2un+
1
2

∂x2
+ ib

∂2un+1

∂y2
+ ∂2un

∂y2

2

+iq
|un+1|2un+1 + |un|2un

2
+ ivun+

1
2 +O(∆t2). (5)

Since the coefficients a, b and q are constants, we can apply the PRADI scheme [18] to

solve the above equation. We first solve ∂2u
∂x2 on the intermediate layer t = tn+

1
2∆t with ∂2u

∂y2

given on the n-th time level, and then solve ∂2u
∂y2

on the (n + 1)-st time level with the just

computed ∂2u
∂x2 on the intermediate layer. Finally we obtain the following PRADI scheme
un+

1
2

[
1− i

∆t

2
v

]
− i

a∆t

2

∂2un+
1
2

∂x2
= i

b∆t

2

∂2un

∂y2
+ un

[
1 + i

q∆t

2
|un|2

]
, (6)

un+1

[
1− i

q∆t

2
|un+1|2

]
− i

b∆t

2

∂2un+1

∂y2
= i

a∆t

2

∂2un+
1
2

∂x2
+ un+

1
2

[
1 + i

∆t

2
v

]
. (7)

In the above ADI scheme (6) and (7), we put the nonlinear term and ∂2u
∂y2

together, thus we

have to solve a nonlinear equation (7), which is generally solved by time consuming iteration.
However, comparing with the HOC-ADI method proposed in [26], the above PRADI scheme
has a remarkable improvement, that is only one equation, equation (7), is required to be
solved iteratively. Nevertheless, in the implementation of the HOC-ADI method [26], one
is required to solve two equations in each iteration, in other words, the HOC-ADI method
needs to solve two equations iteratively. Therefore, we can infer that such arrangement in
the above PRADI scheme will improve the efficiency.

Up to now, we have only obtained the temporal discretization of (4). In order to carry
out the spatial discretization, we divide the domain Ω into a uniform grid denoted by the
grid set {(xj , yk)}, in which xj = Lx + j∆x and yk = Ly + k∆y, where j = 0, 1, . . . ,Mx and
k = 0, 1, . . . ,My, ∆x and ∆y are grid steps, and Mx and My are grid numbers in x- and
y-directions, respectively.

Let ϕt
j,k be an approximation of ϕ(xj , yk, t) for an arbitrary function ϕ(x, y, t). Based

on the PRADI scheme (6) and (7), an implementable computational scheme to solve (4) is
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yielded, by employing arbitrary difference scheme that approximates the second derivative,
for instance, the central difference scheme and the standard fourth-order Padé scheme. Note
that both equations (6) and (7) are one-dimensional problems, as well as the outstanding
applicability of the CCD method in solving nonlinear equations, hence we can take advantage
of the following sixth-order CCD scheme [7, 19] to solve (6) and (7),

7

16
(φ′

i+1 + φ′
i−1) + φ′

i −
h

16
(φ′′

i+1 − φ′′
i−1)−

15

16h
(φi+1 − φi−1) = 0 (8)

and
9

8h
(φ′

i+1 − φ′
i−1) + φ′′

i −
1

8
(φ′′

i+1 + φ′′
i−1) +

3

h2
(φi+1 − 2φi + φi−1) = 0, (9)

where h is the grid size in space, φ is an arbitrary sufficiently smooth function, and φ′
i ≈

φ′(νi), φ
′′
i ≈ φ′′(νi), νi is either xj or yk in the above uniform grid.

Let (uxx)
t
j,k ≈ ∂2u(t)

∂x2 |(xj ,yk) and (uyy)
t
j,k ≈ ∂2u(t)

∂y2
|(xj ,yk) at any time t, then the CCD-

PRADI scheme is presented as follows,
u
n+ 1

2
j,k

[
1− i

∆t

2
vj,k

]
− i

a∆t

2
(uxx)

n+ 1
2

j,k = i
b∆t

2
(uyy)

n
j,k + unj,k

[
1 + i

q∆t

2
|unj,k|2

]
, (10)

un+1
j,k

[
1− i

q∆t

2
|un+1

j,k |2
]
− i

b∆t

2
(uyy)

n+1
j,k = i

a∆t

2
(uxx)

n+ 1
2

j,k + u
n+ 1

2
j,k

[
1 + i

∆t

2
vj,k

]
, (11)

where the second partial derivatives in (10) and (11) are approximated by (9).

As mentioned before, the boundary value of the intermediate variable u
n+ 1

2
j,k for j = 0, Mx

and k = 0, 1, . . . , My in (10) is directly taken from the boundary condition (3). This is
actually a much more efficient way to determine the boundary value of the intermediate
variable than that of the CCD-ADI method proposed in [19]. The CCD-ADI method is a
D’Yakonov ADI-like scheme, which requires to determine the boundary value of the inter-
mediate variable by the second equation of the CCD-ADI scheme based on the boundary
value of un+1. This incurs an extra step in the implementation of the CCD-ADI method to
determine the boundary condition of the intermediate variable, by first computing the first
and second partial derivatives with respect to y by the CCD method. Though such a han-
dling of the intermediate boundary value indeed improves the accuracy of the intermediate
boundary value, it significantly increases the computational time. Most importantly it is
no longer critical when a spatially higher-order accurate method, such as the CCD method,
is exploited with the ADI method. On the other hand, in the CCD-PRADI scheme (10)

and (11), we can obtain the satisfactory boundary condition of u
n+ 1

2
j,k by simply computing

(3). From the numerical results in section 4, we conclude that the CCD-PRADI scheme
(10) and (11) is a satisfactory method, which also indicate the validity in determining the
intermediate boundary condition of the proposed CCD-PRADI method.

In the implementation of the CCD-PRADI method, we have the above CCD formulae
(8) and (9) associated with (10) or (11), to form a system, which is usually not closed in the
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boundary. To close the system, we have to further exploit the following fifth-order one-sided
boundary conditions [7, 19],

14φ′
0 + 16u′1 + 2hφ′′

0 − 4hφ′′
1 +

1

h
(31φ0 − 32φ1 + φ2) = 0 (12)

and

14φ′
M + 16φ′

M−1 − 2hφ′′
M + 4hφ′′

M−1 −
1

h
(31φM − 32φM−1 + φM−2) = 0, (13)

where M is either Mx or My. Moreover, it is also worth noting that although we employ the
fifth-order boundary conditions (12) and (13), the sixth-order accuracy of the CCD method
is attainable, which can be confirmed in numerical results as in [7, 19, 20]. Therefore, we
assert that the CCD-PRADI method is theoretically and numerically sixth-order accurate
in space.

To initiate the computation, we first need to compute (uyy)
0
j,k with a high-order accu-

rate method with initial value u0(x, y), which can be accomplished by the CCD method.
Nevertheless, besides the CCD formulae (8)–(9) and (12)–(13), we need the following two
additional boundary conditions [19],

φ′
0 + 2φ′

1 − hφ′′
1 = − 1

2h
(7φ0 − 8φ1 + φ2) (14)

and

φ′
M + 2φ′

M−1 + hφ′′
M−1 =

1

2h
(7φM − 8φM−1 + φM−2), (15)

to close the system for derivative calculation.
Generally, the coefficient q ̸= 0, hence (11) is a nonlinear equation since the coefficient

i q∆t
2 |un+1

j,k |2 ̸= 0. Thus the Picard iteration, which is also called fixed-point iteration, is
exploited to solve (11), yielding the following iterative process in the implementation of the
CCD-PRADI scheme,

u
n+ 1

2
j,k

(
1− i

∆t

2
vj,k

)
− i

a∆t

2
(uxx)

n+ 1
2

j,k = i
b∆t

2
(uyy)

n
j,k + unj,k

(
1 + i

q∆t

2
|unj,k|2

)
,

(un+1
j,k )∗

[
1− i

q∆t

2
|(un+1

j,k )s|2
]
− i

b∆t

2
(uyy)

∗
j,k = i

a∆t

2
(uxx)

n+ 1
2

j,k + u
n+ 1

2
j,k

(
1 + i

∆t

2
vj,k

)
,

where (un+1
j,k )∗ and (uyy)

∗
j,k denote the (s + 1)-st iterative solution and (un+1

j,k )s is the s-th
iterative solution to (11) for each unknown time level. The initial value for the iteration
is chosen as (un+1

j,k )0 = unj,k, and the iteration is carried out until the stopping criterion

max|(un+1
j,k )∗ − (un+1

j,k )s| < 10−6 is satisfied.
We give the following algorithm to show the detailed instruction for the implementation

of the CCD-PRADI method to solve Eq. (1).
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Algorithm 1: Implementation of the CCD-PRADI method
1. Do j = 0, 1, . . . ,Mx

Compute (u0yy)j,k by (8)–(9), (12)–(13) and (14)–(15) for k = 0, 1, . . . ,My

2. Do n = 0, 1, . . . , N − 1
(a) Compute the right-hand side of (10) for all mesh points

and the boundary conditions u
n+ 1

2
j,k for j = 0, Mx and k = 0, 1, . . . ,My

i. fn
j,k := i b∆t

2 (uyy)
n
j,k + unj,k

[
1 + i q∆t

2 |unj,k|2
]

ii. u
n+ 1

2
j,k := g(xj , yk, n∆t+ ∆t

2 )

(b) Solve (10), i.e. u
n+ 1

2
j,k

[
1− i∆t

2 vj,k

]
− ia∆t

2 (uxx)
n+ 1

2
j,k = fn

j,k,

with the CCD scheme (8)–(9), (12)–(13) and boundary conditions u
n+ 1

2
j,k

(c) Compute the right-hand side of (11) for all mesh points

fn+1
j,k := ia∆t

2 (uxx)
n+ 1

2
j,k + u

n+ 1
2

j,k

[
1 + i∆t

2 vj,k

]
(d) Solve (11), i.e. (un+1

j,k )∗
[
1− i q∆t

2 |(un+1
j,k )s|2

]
− i b∆t

2 (uyy)
∗
j,k = fn+1

j,k

i. Initiate the iteration with (un+1
j,k )s := unj,k and eps := 1

ii. While eps ≥ 10−6, do

(i). Solve (un+1
j,k )∗

[
1− i q∆t

2 |(un+1
j,k )s|2

]
− i b∆t

2 (uyy)
∗
j,k = fn+1

j,k

with the CCD scheme (8)–(9), (12)–(13) and boundary conditions un+1
j,k

(ii). Error calculation eps = max|(un+1
j,k )∗ − (un+1

j,k )s|
and solution update (un+1

j,k )s = (un+1
j,k )∗

iii. un+1
j,k = (un+1

j,k )∗

3. Stability analysis

We now study the stability of the CCD-PRADI method (10) and (11) for solving (1).
Here, we only consider equations without singularity (where a, b, q are not too big), which
allow us to study the stability using linear Fourier method; see [26, 5, 4, 6].

Assume that u is periodic in both x- and y- directions, and at grid node (j, k), let

unj,k = ξnei(wxj+wyk), (uxx)
n
j,k = µn

xe
i(wxj+wyk), (uyy)

n
j,k = µn

ye
i(wxj+wyk) (16)

where ξn, µn
x, µ

n
y are amplitudes at time level n, and wx and wy are phase angles in x- and

y-directions, respectively.
In [19], we revealed the relationship between µn

x, µ
n
y and ξn, which is concluded as the

following lemma.

Lemma 1. (see [19, Lemma 1]) The amplitudes µn
x, µ

n
y and ξn are related in the following
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formulas 
µn
x =

ξnCx

∆x2Ax
,

µn
y =

ξnCy

∆y2Ay
,

where Ax(y) = 20 coswx(y) + 2 cos2wx(y) + 23 and Cx(y) = 3(8 coswx(y) + 11 cos2wx(y) − 19).

Let αx =
Cx

∆x2Ax
and αy =

Cy

∆y2Ay
, by the above lemma, we have

(uxx)
n
j,k = µn

xe
i(wxj+wyk) = αxu

n
j,k,

(uyy)
n
j,k = µn

ye
i(wxj+wyk) = αyu

n
j,k

(17)

For the linear Fourier analysis, as in [26, 6], we set |unj,k|2 = c, where c is constant. Then
the scheme (10)–(11) can be rewritten as

u
n+ 1

2
j,k (1− i∆t

2 vj,k)− ia∆t
2 (∂

2u
∂x2 )

n+ 1
2

j,k = i b∆t
2 (∂

2u
∂y2

)nj,k + unj,k(1 + i qc∆t
2 ),

un+1
j,k (1− i qc∆t

2 )− i b∆t
2 (∂

2u
∂y2

)n+1
j,k = ia∆t

2 (∂
2u

∂x2 )
n+ 1

2
j,k + u

n+ 1
2

j,k (1 + i∆t
2 vj,k).

(18)

Substitute (16) and (17) into (18), we have
[1− ∆t

2 (vj,k + aαx)i]u
n+ 1

2
j,k = [1 + ∆t

2 (qc+ bαy)i]u
n
j,k,

[1− ∆t
2 (qc+ bαy)i]u

n+1
j,k = [1 + ∆t

2 (vj,k + aαx)i]u
n+ 1

2
j,k .

Therefore, amplitude ξ for the proposed CCD-PRADI method is

|ξ| =
∣∣∣∣un+1

j,k

unj,k

∣∣∣∣ = ∣∣∣∣ [1 + ∆t
2 (qc+ bαy)i][1 +

∆t
2 (vj,k + aαx)i

[1− ∆t
2 (qc+ bαy)i][1− ∆t

2 (vj,k + aαx)i]

∣∣∣∣ = 1.

Therefore, it meets the unconditionally stable criterion (|ξ| ≤ 1) and we conclude that the
proposed CCD-PRADI method is unconditionally stable.

4. Numerical experiments

In this section, we test some problems and present the numerical results by the CCD-
PRADI method. For comparison of high order accuracy and efficiency, we also present the
numerical results by the HOC-ADI methods [26]. All experiments are performed based on
Matlab 7.13 on a Dell Vostro 260s computer with 3.1 GHz Intel Core i5-2400 CPU and 4GB
RAM.

Example 1.
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Consider equation (1) in the domain −2.5 ≤ x, y ≤ 2.5 with coefficients a = b = 1, q = 0
and v(x, y) = 0. Obviously, this is a problem of non-homogeneous boundary condition, and
the analytic solution is given by

u(x, y, t) =
i

i− 4t
exp

(
− i

i− 4t
(x2 + y2 + ik0x+ ik20t)

)
,

which is same as the case in [26]. Both the initial condition (2) and Dirichlet boundary
condition (3) are directly taken from the above analytic solution, and we take the wave
number k0 as 5. This problem is a transient Gaussian distribution [26, 23] which originally
centered at (0, 0) and drifting to the negative x direction as time goes on. It is also worth
noting that drifting is a common solution pattern of the nonlinear Schrödinger equations
[17].

The CCD-PRADI method is employed to simulate this problem under a uniform grid
with grid space ∆x = ∆y = h = 1

40 and time step ∆t = 1
1000 , as in [26, 23]. Fig. 1–2 show the

figures of numerical solutions and absolute errors at three moments, t = 0.25, 0.35, and 0.5
by the CCD-PRADI method and the HOC-ADI method, respectively. In view of such
two figures, we conclude that the CCD-PRADI method is non-oscillating, as the HOC-ADI
method [26]. Indeed, it is capable to simulate the evolution of the solution. Moreover, the
absolute error at t = 0.5 shows that the CCD-PRADI method is more accurate than the
HOC-ADI method.

Example 2.
Taking the coefficients in (1) as a = b = 1

2 , q = −1, with the potential function given as
v(x, y) = −[1 − sin2(x) sin2(y)] in the domain 0 ≤ x, y ≤ 2π, then the analytic solution to
equation (1) is given by

u(x, y, t) = sin(x) sin(y) exp(−i2t).

As in Example 1, the initial condition and the Dirichlet boundary condition can be immedi-
ately taken as u0(x, y) = sin(x) sin(y) and g(x, y, t) = 0, respectively.

Example 2 is solved under a uniform grid (∆x = ∆y = h) to show the spatial convergence
rates of the HOC-ADI method and the present CCD-PRADI method. The numerical results
are presented in Table 1 to compare their accuracies under the relative L2-norm error of the
numerical solution with respect to the analytic solution, and to show the efficiency of two
methods. In all tables, “Rate” denotes the convergence rate (Rate = ln(err1/err2)) of each
method, where err1 and err2 are relative L2-norm errors corresponding to the mesh sizes h
and h/2, respectively, and “CPU” denotes the total CPU time in seconds for each method
to solve the discretized system of (1).

Table 1 presents the relative L2-norm errors of the approximations with respect to the
analytic solution and spatial convergence rates of these two methods. In the computation, we
fix the time step ∆t = 1

5000 and final time T = 1 to validate the spatial accuracy. From the
results shown in the Table 1, we can conclude that the present CCD-PRADI method is much
more accurate than the HOC-ADI method. Moreover, when the mesh size is ∆x = ∆y = π

8 ,
the error of the CCD-PRADI method is 4.3040 × 10−6 and the CPU time consumed is
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Figure 1: Numerical solutions (left) and absolute errors (right) of the CCD-PRADI method
for problem 1 at three time levels t = 0.25, 0.35, 0.5 with h = 1

40 and ∆t = 1
1000 .

287.9041 seconds; Nevertheless, in the case that the mesh size is reduced to ∆x = ∆y = π
16 ,

the error of the HOC-ADI method is 6.2142×10−6, which is still greater than the above error
of the CCD-PRADI method, while the consumed CPU time is 347.4441 seconds. Hence, in
this point of view, the CCD-PRADI method is more efficient than the HOC-ADI method at
the same time.
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Figure 2: Numerical solutions (left) and absolute errors (right) of the HOC-ADI method for
problem 1 at three time levels t = 0.25, 0.35, 0.5 with h = 1

40 and ∆t = 1
1000 .

In the CCD-PRADI method, the Picard iteration is applied to tackle the nonlinearity in
(11), without proving its convergence. However, it do converge to the exact solution very fast
at each step. In this experiment, only two iterations is enough to generate a very accurate
approximation at each time level. Fig. 3 shows the fast convergence of the iteration process.

It is worthwhile to note that the Schrödinger equation is mathematically a wave equation,
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Table 1: L2-norm errors and spatial convergence rate at T = 1 with ∆t = 1
5000 .

∆t h
CCD-PRADI HOC-ADI

Error Rate CPU Error Rate CPU

1
5000

π/4 5.1726× 10−4 — 80.7474 1.6225× 10−3 — 19.8311

π/8 4.3040× 10−6 6.9090 287.9041 9.9701× 10−5 4.0244 80.4126

π/16 3.5856× 10−8 6.9073 1110.7428 6.2142× 10−6 4.0040 347.4441
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Figure 3: Semilogy plots of maximum error after each iteration at three moments: (a)
t = 0.25, (b) t = 0.5, (c) t = 1 with h = π

30 and ∆t = 1
10000 .

and the general solutions of wave equations are superpositions of plane waves with some
amplitudes, which implying the drifting pattern and periodicity of a solution to a Schrödinger
equation. To illustrate the wave-like motion of solution to a Schrödinger equation, surface
plots of numerical solutions to Example 2 by the CCD-PRADI method at three moments,
t = 0.25, 0.5 and 1, are presented in Fig. 4. And Figs.5 shows the contour plots of numerical
solutions to Example 2 by the CCD-PRADI method and the HOC-ADI method, as well as
the analytic solutions at three moments, t = 0.25, 0.5 and 1. We can draw a conclusion from
Fig. 5 that the CCD-PRADI method is better than the HOC-ADI method to capture the
evolution of the solution.

Example 3.
To further illustrate the applicability of the proposed CCD-PRADI method to the two-

12



0

2

4

6

0

2

4

6

−0.5

0

0.5

 

 
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

2

4

6

0

2

4

6

−0.4

−0.2

0

0.2

0.4

 

 

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0

2

4

6

0

2

4

6

−0.5

0

0.5

 

 
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

0

2

4

6

−0.5

0

0.5

 

 
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

2

4

6

0

2

4

6

−0.4

−0.2

0

0.2

0.4

 

 −0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0

2

4

6

0

2

4

6

−0.5

0

0.5

 

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4: Surface plots of the solution to example 2 at three moments t = 0.25, 0.5, 1
with h = π

20 and ∆t = 1
5000 (left panel and right panel correspond to the real part and the

imaginary part of the solution, respectively).

dimensional cubic nonlinear Schrödinger equation of non-homogeneous boundary case, we
consider a problem with analytic solution

u(x, y, t) = exp(i(x+ y − t)),

which is also used in [24], in the square domain [0, 2π]× [0, 2π], and coefficients q = −1 and
a = b = 1

2 . The Dirichlet boundary condition and initial condition are simply taken from
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Figure 5: Contour plots of the modulus of solutions to example 2 at three moments: (a)
t = 0.25, (b) t = 0.5 and (c) t = 1 with h = π

20 and ∆t = 1
5000 (left panel, middle panel and

right panel correspond to solutions by the CCD-PRADI method, exact solution and solution
by the HOC-ADI method, respectively).

the above analytic solution. Since |u|2 = 1, hence the potential function is simply taken as
v(x, y) = −q.

We present the numerical results in Table 2 to show the temporally second-order accuracy
of the CCD-PRADI method under a uniform grid (∆x = ∆y = π

64). Table 3 further presents
the convergence rate of the CCD-PRADI method, as well as the CPU time consumed in the
computation. From the results in Table 3, we can conclude that the CCD-PRADI method
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is not only more accurate than the HOC-ADI method, but more efficient.

Table 2: L2-norm errors and temporal convergence rate of the CCD-PRADI method under
a uniform grid at T = 1.

∆x = ∆y ∆t Error Rate

π/64

T/64 5.5823× 10−5 —

T/128 1.3911× 10−5 2.0046

T/256 3.5020× 10−6 1.9900

T/512 8.7391× 10−7 2.0026

Table 3: L2-norm errors and spatial convergence rate of the CCD-PRADI method with
∆t = 1/25000 at T = 1.

∆t h
CCD-PRADI HOC-ADI

Error Rate CPU Error Rate CPU

1
25000

π/4 3.1146× 10−4 — 420.8328 1.1303× 10−3 — 100.0178

π/8 5.5242× 10−6 5.8171 1489.1111 7.3847× 10−5 3.9360 412.7028

π/16 9.3487× 10−8 5.8849 5556.4747 4.7359× 10−6 3.9628 1788.3400

π/32 1.5356× 10−9 5.9279 21824.2260 3.0024× 10−7 3.9795 9423.8168

As shown in [24], the solution to Example 3 is actually a wave function. To further
show the “wave-shift” phenomenon of the solution to Example 3, surface plots of numerical
solutions to Example 3 by the CCD-PRADI method and the HOC-ADI method at three
moments, t = 0.25, 0.5 and 1, are presented in Fig. 6 and Fig. 7, respectively. In view of
these two figures, we can conclude that the CCD-PRADI method captures the evolution of
solution very well.

5. Concluding remarks

In this paper, we developed a CCD-PRADI method for solving two-dimensional cubic
NLSEs. The proposed method is sixth-order accurate in space and second-order accurate in
time, and unconditionally stable by means of linear stability analysis. Numerical experiments
are conducted to test the high order accuracy and efficiency of the CCD-PRADI method
and to illustrate the drifting solution pattern of the NLSE.

We remark that the simulation of the vortex dynamics and quantized vortex interactions
in the NLSEs and the Ginzburg-Landau-Schrödinger equation (see [2, 3, 27, 28, 1]), has not
been considered in this paper, since the proposed method is only for the NLSEs without
singularity. It is challenging to exploit the CCD method for those problems and will be our
future work.
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Figure 6: Surface plots of the real part of solutions to example 3 at three moments: (a)
t = 0.25, (b) t = 0.5 and (c) t = 1 with h = π

20 and ∆t = 1
20000 (left panel and right panel

correspond to solution by the CCD-PRADI method and exact solution, respectively).
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Figure 7: Surface plots of the imaginary part of solutions to example 3 at three moments:
(a) t = 0.25, (b) t = 0.5 and (c) t = 1 with h = π

20 and ∆t = 1
20000 (left panel and right

panel correspond to solution by the CCD-PRADI method and exact solution, respectively).
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