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Abstract

This paper explores applications of the exponential splitting method for ap-
proximating highly oscillatory solutions of the n-dimensional paraxial Helmholtz
equation. An eikonal transformation is introduced for oscillation-free plat-
forms and matrix operator decompositions. It is found that the sequential,
parallel and combined exponential splitting formulas possess not only an-
ticipated algorithmic simplicity and efficiency, but also the accuracy and
asymptotic stability required for highly oscillatory wave computations.
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1. Introduction

Splitting strategies have been backbones of many highly straightforward yet
accurate numerical methods for solving linear or nonlinear partial differential
equations, in particular those oriented from important multiphysics applica-
tions or multiscale environments [1, 3, 5, 7]. In a splitting process, the under-
lying modeling equation is decomposed to several more durable subproblems

1Principal and corresponding author. Email address: Qin Sheng@baylor.edu
2The second author is supported in part by research grants MYRG206(Y3-L4)-FST11-

SHW from University of Macau and 005/2012/A1 from the FDCT of Macao.

Preprint submitted to Elsevier May 30, 2014



to solve before a final approximation is obtained. A successful splitting pro-
cedure yields not only desirable accuracy, but also expected efficiency as well
as stability in practical computations [2, 14].

Exponential splitting has been one of such strategies used frequently due
to its extraordinary simplicity and capability in real applications. Let D ⊂
Rn and u ∈ C be sufficiently smooth. Further, let A1,A2, . . . ,AK be partial
differential operators with smooth coefficients defined in a Banach space H.
Consider the differential equation

∂u

∂z
=

K∑
k=1

Aku+ f(u, z), x ∈ D, z > z0. (1.1)

Assume that Dh is a mesh region superimposed on D, and a suitable spatial
discretization of (1.1) under proper boundary conditions yields the following
semidiscretized system,

v′ =
K∑
k=1

Akv + g(v, z), z > z0, (1.2)

where A1, A2, . . . , AK ∈ Cs×s and v, g ∈ Cs. Note that A1, A2, . . . , AK do not,
in general, commute. Let A1, A2, . . . , AK be z-independent since otherwise
an averaging coefficient method may be applied [8]. If v(z0) = v0 is an initial
vector, and {z0, z1, z2, . . . , zℓ, . . .} be a z-mesh for which zℓ+1 − zℓ = τ >
0, ℓ = 0, 1, 2, . . . , are constructed through an adaptive mechanism [1, 6].
Then the solution of (1.2) can be expressed as

v(zℓ+1) = exp

{
τ

K∑
k=1

Ak

}
v(zℓ) +

∫ τ

0

exp

{
(τ − ξ)

K∑
k=1

Ak

}
× g(v(zℓ + ξ), zℓ + ξ)dξ, ℓ = 0, 1, 2, . . . (1.3)

An application of the trapezoid rule for the integral above leads to

vℓ+1 = exp

{
τ

K∑
k=1

Ak

}(
vℓ +

τ

2
gℓ
)
+
τ

2
gℓ+1, ℓ = 0, 1, 2, . . . , (1.4)

where vα, gα are mesh functions approximating v(zα), g(v
α, zα), respectively,

and B = exp

{
τ

K∑
k=1

Ak

}
serves as the amplification matrix while the source

term is frozen [14, 17].
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Denote

S(A1, A2, . . . , AK , τ) =
K∏
k=1

exp(τAk), A1, A2, . . . , AK ∈ Cs×s, τ ∈ R. (1.5)

Then a typical sequential exponential splitting for approximating (1.3) is

ξℓs = S(AK , AK−1, . . . , A1, τ/2)
(
wℓ +

τ

2
gℓ
)
;

wℓ+1 = S(A1, A2, . . . , AK , τ/2)ξ
ℓ
s +

τ

2
gℓ+1, ℓ = 0, 1, 2, . . . , (1.6)

where wα, gα are mesh functions for approximating v(zα), g(v
α, zα), respec-

tively [1, 6, 14]. Further, while a typical parallel exponential splitting is

ξℓp = S(AK , AK−1, . . . , A1, τ)
(
wℓ +

τ

2
gℓ
)
;

ξℓq = S(A1, A2, . . . , AK , τ)
(
wℓ +

τ

2
gℓ
)
;

wℓ+1 =
1

2

(
ξℓp + ξℓq

)
+
τ

2
gℓ+1, ℓ = 0, 1, 2, . . . , (1.7)

a combined exponential splitting can be expressed as

wℓ+1 =
1

4

[
2S(A1, A2, . . . , AK , τ/2)ξ

ℓ
s + ξℓp + ξℓq

]
+
τ

2
gℓ+1, ℓ = 0, 1, 2, . . . .

(1.8)
Approximations (1.6)–(1.8) are second order accurate (see Appendix). They
are ideal in multiphysics and multiscale applications [4, 5, 14]. They provide
more convenient accesses to the standard splitting formulation as well as
alternative ways to investigate characteristic splitting properties, such as the
stability, convergence and errors, via the baseline first order formula (1.5)
[12, 13]. This may continue improving our understanding of exponential
splitting methods and beyond as we can see in this short note.

The aim of this paper is to explore aforementioned simplified procedures
for the split numerical solution of a highly oscillatory multidimensional prob-
lem that models electromagnetic wave propagations in the form of either
paraboloidal waves or Gaussian beams within a narrow cone. The particu-
lar wave phenomena have been essential in astrophysics and space physics,
especially in inflationary cosmology when nonlinear dispersion relations are
concerned [4, 7, 19]. Our study is organized as follows. In the next section,
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an n-dimensional paraxial Helmholtz equation is presented and decomposed
to a nonlinear system via the eikonal transformation. Block-tridiagonal sys-
tems are acquired after an application of appropriate Padé approximation
of (1.5). Section 3 is devoted to detailed analysis of the asymptotic stabil-
ity concerned. It is shown that the splitting procedures are unconditionally
asymptotically stable. Remarks are given when variations of algorithmic set-
tings are introduced. In Sections 4 and 5, an illustrative simulation example
and brief conclusions are given. Finally, the order of accuracy of generalized
splitting formulas (1.6)-(1.8) is investigated in Section 6. The h-weighted
spectral norm is used in the stability analysis.

2. Eikonal Transformation Based Exponential Splitting

Let E be an n-dimensional electric field function and z be the propagation
direction of a beam. Further, let x = (x1, x2, . . . , xn)

⊤ be the transverse
vector, D = {x : a < xk < b, k = 1, 2, . . . , n} be the transverse domain, ∂D
be its boundary and D̄ = D∪ ∂D. We have the paraxial Helmholtz equation
[11, 18],

2iκ0r0
∂E

∂z
=

n∑
k=1

∂2E

∂x2k
+ κ20

[
r2(x, z)− r20

]
E, x ∈ D, z > z0, (2.1)

where i =
√
−1, κ0 is the wavenumber in free space, r0 is the reference refrac-

tive index and r(x, z) is the cross section index profile. Equation (2.1) models
the propagation of a Gaussian beam in the n-dimensional field, or the flow
covariance in quantum gravity around Lifshitz points [6, 7]. Lower dimen-
sional versions of (2.1) have also played an important role in laser propagation
modeling and laser-material interaction simulations [11]. Numerous numeri-
cal methods, including ADI, LOD and spectral schemes [3, 14, 16], have been
designed and tested for solving (2.1). Many of them offer satisfactory approx-
imations unless in cases where extra high wave parameters are utilized. It is
evident that, when κ0 ≫ 10, the field function E becomes highly oscillatory
and continuing refinements of the computational mesh over D are required for
maintaining acceptable computational accuracy [16]. This may not only lead
to unrealistically small step sizes, but also impair the overall computational
efficiency even when standard exponential splitting procedures are deployed
[5, 15, 18]. It has been therefore meaningful to improve conventionally used
exponential splitting strategies for overcoming above-mentioned difficulties.
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To this end, let ϕ(x, z), ψ(x, z) be sufficiently smooth, |ϕ| ≥ ϕ0 > 0, and

|ϕz| ≪ κ|ϕ|, |ϕzz| ≪ κ2 |ϕ| , x ∈ D, z > z0,

where κ = κ0r0 ≫ 1 [16]. Consider the eikonal transform [11, 15],

E(x, z) = ϕ(x, z)eiκψ(x,z), x ∈ D, z > z0.

A substitution of the above into (2.1) yields the following nonlinear differen-
tial system,

wz = P

n∑
k=1

wxkxk + f, x ∈ D, z > z0. (2.2)

where

w =

[
ϕ
ψ

]
, P =

[
0 α
β 0

]
, f =

[
f1
f2

]
and

α =
ϕ

2
, β = − 1

2κ2ϕ
, f1 =

n∑
k=1

ϕxkψxk , f2 =
1

2

(
n∑
k=1

ψ2
xk

− κ2 (r2 − r20)

r20

)
.

Further, we adopt the following initial and boundary conditions,

w(x, z) = 0, x ∈ ∂D, z ≥ z0, (2.3)

w(x, z0) = g0(x), x ∈ D, (2.4)

where g0 is sufficiently smooth.
Note that the initial-boundary value problem (2.2)–(2.4) is oscillation-

free even with high wavenumbers, mesh steps in numerical computations can
thus be relatively large. This makes fast numerical solutions of (2.1) to be
realistic. In fact, computational results from exponential splitting schemes or
spectral approximations based on (2.2) have demonstrated its huge potential,
though the study of its numerical stability is still in an infancy, partially due
to relatively complex operator structures of (1.6)–(1.8) [6, 15, 16].

Given m ≫ 1. For h = (b − a)/(m + 1) and xk,0 = a, xk,m+1 = b, k =
1, 2, . . . , n, we define a transverse mesh Dh = {(x1,k1 , x2,k2 , . . . , xn,kn) : xk,j =
xk,j−1 + h, j = 1, 2, . . . ,m; k = 1, 2, . . . , n} . Denote fk1,k2,...,kn(z) = f(x1,k1 ,
x2,k2 , . . . , xn,kn , z), x ∈ Dh. Approximating the second derivatives in (2.2)
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by central differences on Dh and utilizing (2.3), we acquire the following
semidiscretized system of (2m)n equations,

w′ =
n∑
k=1

Akw + f, (2.5)

together with (2.4), where

Ak =
1

h2

( n−k︷ ︸︸ ︷
I2m ⊗ · · · ⊗ I2m

)
⊗ T ⊗ I2 ⊗

( k−1︷ ︸︸ ︷
I2m ⊗ · · · ⊗ I2m

)
D, k = 1, . . . , n,

in which ⊗ stands for the Kronecker product, Iα is the α×α identity matrix,

T =


−2 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −2

 ∈ Rm×m,

and

D = diag (Pk1,k2,...,kn) , w =
(
w⊤
k1,k2,...,kn

)⊤
, f =

(
f⊤
k1,k2,...,kn

)⊤
.

The notation χk1,k2,...,kn used above means that the components range from
χ1,1,1,...,1 to χm,m,m,...,m in the fashion that

1. for each set of indexes k2, . . . , kn, values of k1 increase from 1 to m
monotonically;

2. for indexes k2, . . . , kn, those on the left has priorities to increase from
1 to m monotonically first.

Apparently, T is Toeplitz, symmetric and tridiagonal and (2.5) carries
a local truncation error of the size O(h2). Consider the spectral norm. We
have

Lemma 2.1.

∥D∥2 =
1

2κ
, ∥T∥2 = 4 max

1≤k≤m
sin2 kπ

m+ 1
.

6



Proof. It is observed that

Pk1,k2,...,knP
⊤
k1,k2,...,kn

=

[
αk1,k2,...,knβk1,k2,...,kn 0

0 αk1,k2,...,knβk1,k2,...,kn

]
.

Thus,

∥Pk1,k2,...,kn∥2 =
√
αk1,k2,...,knβk1,k2,...,kn =

√
1

4κ2
=

1

2κ
.

Therefore the first equality is true. Proofs of the second equality is conven-
tional and can be found in existing discussions including [8, 16].

Now, with Ak, k = 1, 2, . . . , n, frozen at zℓ and the truncation error
dropped, the numerical solution of (2.5) can be computed via any of second
order splitting (1.6)–(1.8). However, due to the participation of (1.5), we
only need to focus at the following building block formula for the analysis of
numerical stability.

yℓ+1 = S(A1, A2, . . . , An, τ)
(
yℓ +

τ

2
gℓ
)
+
τ

2
gℓ+1, ℓ = 0, 1, 2, . . .

Replace the matrix exponentials in S by [1/1] Padé approximants, re-
spectively. We obtain readily our baseline implicit decomposition scheme

yℓ+1 =

[
n∏
k=1

(
I − τ

2
Ak

)−1 (
I +

τ

2
Ak

)](
yℓ +

τ

2
gℓ
)
+
τ

2
gℓ+1, ℓ = 0, 1, 2, . . .

(2.6)
Solutions of the above nonlinear system are traditionally computed via either
a Newton-alike iterative procedure, or a linearization of gℓ+1. In our approach,
we prefer to replace the unknown yℓ+1 in the source function by a suitable
approximation, such as that obtained by using an Euler or extrapolation
method [1, 8, 17].

Remark 2.1. Implementations with other boundary conditions, such as Neu-
mann, Robin, or nonlocal conditions, may result in different coefficient ma-
trices in (2.5) and (2.6). This will affect subsequent investigations of the
stability, though similar results are expected. We shall leave detailed discus-
sions to forthcoming papers.

Remark 2.2. Since the overall accuracy of eikonal transformation based ex-
ponential splitting used is of second order, the use if the [1/1] Padé approx-
imation is sufficient [9]. However, different explicit or implicit methods due
to other second order rational approximants for S may also be constructed.
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3. Analysis of the Asymptotic Stability

The concept of asymptotic stability has been extensively studied in numerous
recent publications targeting at highly oscillatory wave applications. In the
case, asymptotic profiles of targeted operators as the wavenumber, κ, tends
to infinity are investigated while discretazation parameters h, τ remaining
unchanged. For the latest development in the literature, the reader is referred
to [3, 4, 5, 16, 18] and references therein. Let ∥ · ∥2,h =

√
h∥ · ∥2 be the h-

weighted spectral norm based on Dh.

Definition 3.1. Consider a semidiscretized scheme with a perturbation ma-
trix A for solving an oscillatory problem associated with a high wavenumber
κ≫ 1. We say that the semidiscretized method is asymptotically stable if and
only if there exist positive parameters c and d independent of κ such that

∥A∥2,h ≤
c

κd
holds as κ→ ∞.

The value of d is called the asymptotical stability index of the underlying
method.

Definition 3.2. Consider a fully discretized finite difference method with an
amplification matrix B for solving an oscillatory problem associated with a
high wavenumber κ≫ 1.We say that the fully discretized method is asymptot-
ically stable if and only if there exist positive parameters c and d independent
of κ such that

∥B∥2,h ≤
√
h+

c

κd
holds for κ→ ∞.

The value of d is called the asymptotical stability index of the numerical
method.

Theorem 3.1. The eikonal transformation based and oscillation-free semidis-
cretized scheme (2.5) for solving (2.1) together with (2.3), (2.4) is uncondi-
tionally asymptotically stable with an index one.
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Proof. Consider the perturbation matrix A =
n∑
k=1

Ak. Then for any fixed

n, h we have

∥A∥2,h ≤
n∑
k=1

∥Ak∥2,h

≤ 1

h3/2

n∑
k=1

∥∥∥( n−k︷ ︸︸ ︷
I2m ⊗ · · · ⊗ I2m

)
⊗ T ⊗ I2 ⊗

( k−1︷ ︸︸ ︷
I2m ⊗ · · · ⊗ I2m

)∥∥∥
2
∥D∥2

=
1

h3/2

n∑
k=1

∥T∥2∥D∥2 ≤ 2n

h3/2κ
=

c

κ
,

where c = 2nh−3/2. Thus the theorem is true.

Theorem 3.2. The semidiscretized formula based trapezoidal scheme (1.4)
for solving (2.1) together with (2.3), (2.4) is unconditionally asymptotically
stable with an index one.

Proof. Recall (1.4). For any fixed n, h, let c = κ1 =
4nτ

h3/2
. Then the

h-weighted spectral norm of the amplification matrix, under the assumption

κ > κ1 and the fact that exp(x) ≤ 1

1− x
, ∀ 0 < x < 1,∥∥∥∥∥exp

{
τ

n∑
k=1

Ak

}∥∥∥∥∥
2,h

≤
√
h exp

{
τ

n∑
k=1

∥Ak∥2

}
≤

√
h exp

{
τ

h2

n∑
k=1

∥T∥2∥D∥2

}

≤
√
h exp

{
2nτ

κh2

}
≤

√
h

1− c
2κ

=
√
h+

c
2κ

1− c
2κ

≤
√
h+

c

κ
.

This completes our proof.

As for the baseline splitting method (2.6), we have the amplification ma-
trix

B =
n∏
k=1

Bk =
n∏
k=1

(
I − τ

2
Ak

)−1 (
I +

τ

2
Ak

)
, κ > κ1 ≫ 1,

where Bk =
(
I − τ

2
Ak

)−1 (
I +

τ

2
Ak

)
, and Ap, Aq, 1 ≤ p, q ≤ n, do not, in

general, commute.
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Theorem 3.3. Let κ ≥ κ1 = 2τ/h2. Then the eikonal transformation based
and oscillation-free baseline exponential splitting method (2.6) for solving
(2.1) together with (2.3), (2.4) is unconditionally asymptotically stable with
an index one.

Proof. Since

Bk = I + τAk

(
I − τ

2
Ak

)−1

,

it follows that

∥Bk∥2,h =

∥∥∥∥I + τAk

(
I − τ

2
Ak

)−1
∥∥∥∥
2,h

≤
√
h+ τ

√
h ∥Ak∥2

∥∥∥∥(I − τ

2
Ak

)−1
∥∥∥∥
2

≤
√
h

(
1 +

τ

h2
∥T∥2∥D∥2

∥∥∥∥(I − τ

2
Ak

)−1
∥∥∥∥
2

)
≤

√
h

(
1 +

2τ

κh2

∥∥∥∥(I − τ

2
Ak

)−1
∥∥∥∥
2

)
. (3.1)

On the other hand, we observe that(
I − τ

2
Ak

)−1

= I +
τ

2
Ak

(
I − τ

2
Ak

)−1

.

Thus,

0 <
(
1− τ

h2κ

)∥∥∥∥(I − τ

2
Ak

)−1
∥∥∥∥
2

≤
(
1− τ

2
∥Ak∥2

)∥∥∥∥(I − τ

2
Ak

)−1
∥∥∥∥
2

≤ 1.

It follows that ∥∥∥∥(I − τ

2
Ak

)−1
∥∥∥∥
2

≤ h2κ

h2κ− τ
≤ 2

due to the fact that θ(x) = x(x− τ)−1 ≤ θ(2τ) for any x ≥ 2τ. Recall (3.1),

∥Bk∥2,h ≤
√
h

(
1 +

4τ

κh2

)
.

Consequently,

∥B∥2,h ≤
√
h

(
1 +

4τ

κh2

)n
=

√
h+

c

κ
,

where

c =
4τ

h3/2

(
n+

n(n− 1)

2!
ξ +

n(n− 1)(n− 2)

3!
ξ2 + · · ·+ ξn−1

)
, ξ =

4τ

κ1h2
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due to the binomial expansion formula. Therefore the splitting method is
unconditionally asymptotically stable with the index d = 1.

The above investigation implies

Corollary 3.1. Let κ1 ≥ 2τ/h2. Then the eikonal transformation based
and oscillation-free sequential splitting method (1.6), parallel splitting method
(1.7) and combined splitting method (1.8) for solving (2.1) together with (2.3),
(2.4) are unconditionally asymptotically stable with an index one.

Remark 3.1. Theorems 3.1–3.3 and Corollary 3.1 ensure that the asymptot-
ical stability index of the numerical methods involved is one. However there
is a possibility to improve this result, in particular when improved second
order exponential splitting or certain high order formulas [2] are involved.
However, the tasks can be technically challenging.

Remark 3.2. The grid size h can be different in different transverse directions.
This may or may not affect dimensions of the matrix operators resulted [11].
However, discussions in the former situation are apparently more compli-
cated. Nevertheless, stability analysis via a variable h-weighted norm can be
challenging. But different matrix norms can also be utilized. We shall again
leave these issues to our forthcoming discussions.

4. A Simulation Example

As an illustration of the efficiency and capability of the splitting schemes
studied, oriented from (2.1), we consider a two-dimensional paraxial Helmholtz
equation,

2iκEz = Ex1x1 + Ex2x2 − κ2E, (x1, x2) ∈ D, z > z0,

where D = {(x1, x2) : − a < x1, x2 < a} , a ∈ R. Due to its constant cross
section index profile, the above equation can be reformulated to the following
[6],

Ez = γEx1x1 + γEx2x2 , (x1, x2) ∈ D, z > z0 > 0, (4.1)

where γ = −i/(2κ). Further, consider the Gaussian beam initial function,

E(x1, x2, z) =
exp {−(x21 + x22)/[2(1 + iz11)]}

1 + iz11
, (x1, x2) ∈ D, z > z0 > 0,

(4.2)
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where z11 > 0. Equations (4.1), (4.2) models a variety of highly oscilla-
tory wave focusing exactly at z11 [11]. Any reliable numerical method for
solving the problem must be asymptotically stabile and reproduce correctly
the underlying focusing phenomenon [11, 15, 18]. This has become an ef-
fective testing stone for the correctness and accuracy of highly oscillatory
wave simulations. Targeting at the numerical solution of (4.1), (4.2) to-
gether with homogeneous first boundary conditions (2.3), we test both the
ADI oriented sequential splitting formula (1.6) as well as LOD oriented par-
allel splitting formula (1.7) for the eikonal transformation based system (2.5)
in experiments. Since numerical solutions obtained are similar, for the sake
of simplicity in presentations, herewith we only show results of the sequential
splitting with h = 1/300, and dimensional Courant numbers 15/2, 75/2 when
z11 = 50, 100, respectively.
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Figure 4.1. Trajectories of maximal modules function T (z) as z increases till focusing
regions (Left: z11 = 50, Right: z11 = 100). Little differences between solutions of (1.6)
and (1.7) are found.

First, trajectories of the modules function T (z) = max
(x1,x2)

|E(x1, x2, z)| as

z travels from z0 to focusing regions are shown in Figure 4.1. We may ob-
serve that the energy grows monotonically till the focusing point in cases
when κ = 50, 100. Peak values of E, max

z
Tz11=50(z) = 0.99747361 and

max
z
Tz11=100(z) = 0.98958524, are highlighted respectively. The simulations

match precisely measurements from laboratorial experiments [11, 18].
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Figure 4.2. Relative posteriori errors of the approximation T (z) as z increases till focusing
regions (Left: z11 = 50, Right: z11 = 100). A logarithmic scale is used in the y-direction
to shown more details of the delicate computational error dynamics.

Next, in Figure 4.2, we plot corresponding relative posteriori errors Ez11=50(z)
and Ez11=100(z), where

Ez11(z) =
∣∣Tz11,τ (z)− Tz11,τ/2m(z)

∣∣
|Tz11,τ (z)|

, 0 < z < z11.

Parametric values m = 1, 2 are utilized in cases of z11 = 50, 100, respec-
tively. It is interesting to see in Figure 4.2 that the posteriori errors are
well below 10−2% throughout beam propagations. They reach maximums,
max
z

Ez11=50(z) = 0.00202885 and max
z

Ez11=100(z) = 0.02815409 only at re-

spective focusing points (this can be a good indicator that suitable grid
refinements [1, 6] may be introduced to focusing regions). Nevertheless, the
overall error performances are highly satisfactory.
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Figure 4.3. Focusing numerical solution E (Left: z11 = 50, Right: z11 = 100). From top
to bottom are real, imaginary parts and modules of the solution, respectively.
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Figure 4.4. Enlarged focusing numerical solution details (Left: z11 = 50, Right: z11 =
100). From top to bottom are real, imaginary parts and modules of the solution, respectively.

Further, in Figure 4.3, we show simulated focusing solution profiles in
the transverse direction x1 since those in the x2-direction are similar. Again,
little differences between solutions of (1.6) and (1.7) are found. The solutions
blow-up within a narrow transverse region. This indicates high energy con-
centrations as expected. The profiles well agree with known computational
results documented in [11, 16, 18]. To see more details of the oscillation na-
ture of propagating waves, we locally enlarge images in Figure 4.3 to that in
Figure 4.4. Though amplitudes of perturbations are relatively small as com-
pared with focusing peaks, wave oscillations are still persistent and clearly

14



visible throughout simulation experiments. The phenomenon well agrees
with explorations of errors in linearized and localized wave approximations
[15, 17].

Figure 4.5. 3D views of the focusing numerical solution E (Right: x1-direction projections;
z11 = 100). From top to bottom are real, imaginary parts and modules of the solution,
respectively.
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Figure 4.6. 3D views of the enlarged focusing numerical solution (z11 = 100). The E-
range used is

[
−0.3× 10−4, 0.3× 10−4

]
. From top to bottom are real, imaginary parts and

modules of the solution, respectively.

Finally, Figures 4.5 and 4.6 are devoted to 3-dimensional views of the
focusing numerical solution via the splitting methods (1.6) and (1.7). The
solution surfaces are highly vital. They provide precise information about
an ideal focusing when a large value of z11 = 100 is applied. The simulations
are important to various applications including massive and composite micro
lens design and production [6]. In the locally enlarged figures in Figure
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4.6, circular highly oscillatory waves are clearly visible. There has been no
surprise that numerical solutions from asymptotically stable sequential and
parallel splitting computations exhibit satisfactory results. Again, transverse
step h = 1/300 and dimensional Courant number τ/h2 = 75/2 are used in
Figures 4.5 and 4.6 simulations.

5. Conclusions

This paper explores an inherent relevance between the standard first order ex-
ponential splitting algorithm (1.5) and second order sequential, parallel and
combined splitting formulas (1.6)–(1.8). Based on this, an eikonal transfor-
mation based exponential splitting method for solving the highly oscillatory
n-dimensional paraxial Helmholtz equation is investigated. Key asymptotic
stability of the numerical scheme is proven. It is found that the asymptotical
stability index of the underlying method is one.

The asymptotic stability studied in this paper can also be extended for ex-
amining similar oscillation-free algorithms, especially those for solving more
sophisticated and Gaussian beam oriented problems including high dimen-
sional Kukhtarev systems in photorefractive wave and wave-material interac-
tion applications [11, 15], or Maxwell’s equations in universal electromagnetic
fields and cosmology [5, 7, 19]. Although most discussions presented in this
paper involve only homogeneous first boundary conditions and on uniform
transverse grids, reflective or nonlocal conditions together with grid adap-
tations [1, 6] can also be incorporated. In addition, certain target-oriented
splitting strategies, such as the asymptotic and high order splitting [2, 12, 13],
may also be employed for higher order multi-dimensional wave approxima-
tions. The study of the nonlinear numerical stability with eikonal formulas
for highly oscillatory waves, however, are still in its infancy in general. These
are, needless to say, among our continuing endeavors.

6. Appendix

We show that (1.6)–(1.8) are indeed second order exponential splitting (see
definitions in [9] §4.1 and [12]). To this end, we need

Lemma 6.1. Let A, B ∈ Cm×m, m ≥ 1, and A, B be independent of
τ > 0. Then [exp(τA), exp(τB)] ≡ exp(τA) exp(τB) − exp(τB) exp(τA) =
τ 2[A,B] +O(τ 3) as τ → 0+.
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Proof. Expanding matrix exponentials in the commutator we acquire that

exp(τA) exp(τB)− exp(τB) exp(τA)

=

(
I + τA+

τ 2

2
A2 +

τ 3

3!
A3 + · · ·

)(
I + τB +

τ 2

2
B2 +

τ 3

3!
B3 + · · ·

)
−
(
I + τB +

τ 2

2
B2 +

τ 3

3!
B3 + · · ·

)(
I + τA+

τ 2

2
A2 +

τ 3

3!
A3 + · · ·

)
= I + τB +

τ 2

2
B2 +

τ 3

3!
B3 + τA+ τ 2AB +

τ 3

2
AB2

+
τ 2

2
A2 +

τ 3

2
A2B +

τ 3

3!
A3 − I − τA− τ 2

2
A2 − τ 3

3!
A3

− τB − τ 2BA− τ 3

2
BA2 − τ 2

2
B2 − τ 3

2
B2A− τ 3

3!
B3 + · · ·

= τ 2(AB −BA) +
τ 3

2

(
AB2 + A2B −BA2 −B2A

)
+O(τ 4)

= τ 2[A,B] +O(τ 3), τ → 0+.

This ensures our lemma.
We first show that

PK(τ) = S(A1, A2, . . . , AK , τ/2)S(AK , AK−1, . . . , A1, τ/2), 0 < τ ≪ 1,

is a second order exponential splitting for K ≥ 2. Note that

P2(τ) = exp
(τ
2
A1

)
exp(τA2) exp

(τ
2
A1

)
= exp(τ(A1 + A2)) +O(τ 3)

is the standard second order Strang’s splitting [9, 12]. Let K = 3. We have

exp (τ(A1 + A2 + A3)) = exp
(τ
2
A1

)
exp (τ(A2 + A3)) exp

(τ
2
A1

)
+O(τ 3)

= exp
(τ
2
A1

){
exp

(τ
2
A2

)
exp(τA3) exp

(τ
2
A2

)
+O(τ 3)

}
exp

(τ
2
A1

)
+O(τ 3)

= exp
(τ
2
A1

)
exp

(τ
2
A2

)
exp(τA3) exp

(τ
2
A2

)
exp

(τ
2
A1

)
+O(τ 3)

= S(A1, A2, A3τ/2)S(A3, A2, A1, τ/2) +O(τ 3) = P3(τ) +O(τ 3).
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Assume that exp (τ(A1 + A2 + · · ·+ An)) = Pn(τ) +O(τ 3), n > 3. Now,

exp (τ(A1 + A2 + · · ·+ An + An+1)) = exp
(τ
2
A1

)
exp

(τ
2
A2

)
· · ·

× · · · exp
(τ
2
An−1

)
exp(τ(An + An+1)) exp

(τ
2
An−1

)
· · ·

× · · · exp
(τ
2
A2

)
exp

(τ
2
A1

)
+O(τ 3)

= exp
(τ
2
A1

)
exp

(τ
2
A2

)
· · · exp

(τ
2
An−1

)
×
{
exp

(τ
2
An

)
exp (τAn+1) exp

(τ
2
An

)
+O(τ 3)

}
× exp

(τ
2
An−1

)
· · · exp

(τ
2
A2

)
exp

(τ
2
A1

)
+O(τ 3)

= exp
(τ
2
A1

)
exp

(τ
2
A2

)
· · · exp

(τ
2
An−1

)
exp

(τ
2
An

)
exp(τAn+1)

× exp
(τ
2
An

)
exp

(τ
2
An−1

)
· · · exp

(τ
2
A2

)
exp

(τ
2
A1

)
+O(τ 3)

= S(A1, A2, . . . , An, An+1τ/2)S(An+1, An, . . . , A1, τ/2) +O(τ 3)

= Pn+1(τ) +O(τ 3), τ → 0+.

Therefore PK(τ) must be a second order exponential splitting according to
the induction used.

Next, we denote

QK(τ) =
1

2
{S(A1, A2, . . . , AK , τ) + S(AK , AK−1, . . . , A1, τ)} , 0 < τ ≪ 1,

where K ≥ 2. Apparently,

Q2(τ) =
1

2
{S(A1, A2, τ) + S(A2, A1, τ)} = exp(τ(A1 + A2)) +O(τ 3)
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is the conventional second order parallel splitting [12, 14]. Further,

exp(τ(A1 + A2 + A3))

=
1

2
{exp(τA1) exp(τ(A2 + A3)) + exp(τ(A3 + A2)) exp(τA1)}+O(τ 3)

=
1

4
exp(τA1)

{
exp(τA2) exp(τA3) + exp(τA3) exp(τA2) +O(τ 3)

}
+

1

4

{
exp(τA2) exp(τA3) + exp(τA3) exp(τA2) +O(τ 3)

}
exp(τA1) +O(τ 3)

=
1

2
{exp(τA1) exp(τA2) exp(τA3) + exp(τA3) exp(τA2) exp(τA1)}

+
1

4
exp(τA1) {exp(τA3) exp(τA2)− exp(τA2) exp(τA3)}

+
1

4
{exp(τA2) exp(τA3)− exp(τA3) exp(τA2)} exp(τA1) +O(τ 3)

= Q3(τ) +
1

4

{
exp(τA1) [exp(τA3), exp(τA2)]

− [exp(τA3), exp(τA2)] exp(τA1)
}
+O(τ 3)

= Q3(τ) +
1

4

{(
I + τA1 +

τ 2

2
A2

1 + · · ·
)(

τ 2[A3, A2] +O(τ 2)
)

−
(
τ 2[A3, A2] +O(τ 2)

)(
I + τA1 +

τ 2

2
A2

1 + · · ·
)}

+O(τ 3)

= Q3(τ) +
1

4

{
τ 2[A3, A2]− τ 2[A3, A2] +O(τ 3)

}
+O(τ 3)

= Q3(τ) +O(τ 3).

Therefore Q3(τ) is of second order. Assume the same to be true for
Qn(τ), n > 3. Then,
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exp (τ(A1 + A2 + · · ·+ An + An+1))

=
1

2
{exp(τA1) exp(τA2) · · · exp(τAn−1) exp(τ(An + An+1))

+ exp(τ(An+1 + An)) exp(τAn−1) · · · exp(τA2) exp(τA1)}+O(τ 3)

=
1

4
exp(τA1) exp(τA2) · · · exp(τAn−1)

× {exp(τAn) exp(τAn+1) + exp(τAn+1) exp(τAn)}

+
1

4
{exp(τAn) exp(τAn+1) + exp(τAn+1) exp(τAn)}

× exp(τAn−1) · · · exp(τA2) exp(τA1)] +O(τ 3)

=
1

4
exp(τA1) exp(τA2) · · · exp(τAn−1) exp(τAn) exp(τAn+1)

+
1

4
exp(τA1) exp(τA2) · · · exp(τAn−1) exp(τAn+1) exp(τAn)

+
1

4
exp(τAn+1) exp(τAn) exp(τAn−1) · · · exp(τA2) exp(τA1)

+
1

4
exp(τAn) exp(τAn+1) exp(τAn−1) · · · exp(τA2) exp(τA1) +O(τ 3)

= Qn+1(τ) +
1

4
exp(τA1) exp(τA2) · · · exp(τAn−1)[exp(τAn+1), exp(τAn)]

− 1

4
[exp(τAn+1), exp(τAn)] exp(τAn−1) · · · exp(τA2) exp(τA1) +O(τ 3).

Since

exp(τA1) exp(τA2) · · · exp(τAn−1) =

(
I + τA1 +

τ 2

2
A2

1 + · · ·
)

×
(
I + τA2 +

τ 2

2
A2

2 + · · ·
)
· · ·
(
I + τAn−1 +

τ 2

2
A2
n−1 + · · ·

)
= I + τ(A1 + A2 + · · ·An−1) +O(τ 2),

exp(τAn−1) · · · exp(τA2) exp(τA1) =

(
I + τAn−1 +

τ 2

2
A2
n−1 + · · ·

)
×
(
I + τAn−2 +

τ 2

2
A2
n−2 + · · ·

)
· · ·
(
I + τA1 +

τ 2

2
A2

1 + · · ·
)

= I + τ(A1 + A2 + · · ·An−1) +O(τ 2)
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and [exp(τAn+1), exp(τAn)] = τ 2[An+1, An]+O(τ 3) according to Lemma 6.1,
we have

exp (τ(A1 + A2 + · · ·+ An + An+1)) = Qn+1(τ) +O(τ 3), τ → 0+.

The above indicates that Qn+1(τ) is a second order formula. Therefore (1.6)–
(1.8) are second order exponential splitting.
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