
Context Representation, Transformation and Comparison
for Ad Hoc Product Data Exchange

 Jingzhi Guo and Chengzheng Sun
School of Computing and Information Technology
Griffith University, Brisbane, QLD 4111, Australia

Tel: +61-7-38753765/38756540

{J.Guo, C.Sun}@cit.gu.edu.au

ABSTRACT
Product data exchange is the precondition of business interopera-
tion between Web-based firms. However, millions of small and
medium sized enterprises (SMEs) encode their Web product data
in ad hoc formats for electronic product catalogues. This prevents
product data exchange between business partners for business in-
teroperation. To solve this problem, this paper has proposed a
novel concept-centric catalogue engineering approach for repre-
senting, transforming and comparing semantic contexts in ad hoc
product data exchange. In this approach, concepts and contexts of
product data are specified along data exchange chain and are
mapped onto several novel XML product map (XPM) documents
by utilizing XML hierarchical structure and its syntax. The de-
signed XPM has overcome the semantic limitations of XML
markup and has achieved the semantic interoperation for ad hoc
product data exchange.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces – Web-based interactions. H.3.5 [informa-
tion Storage and Retrieval]: Online Information services – Shar-
ing Data; Web-based services.

General Terms
Documentation, Design, Languages

Keywords
Concept, semantics, product data integration, context representa-
tion, context transformation, context comparison, ad hoc product
data exchange, electronic commerce, XML product map, XPM,
electronic product catalogue

1. INTRODUCTION
Product data exchange is the precondition of business interop-

eration between Web-based firms [9][13]. However, millions of
small and medium sized enterprises (SMEs) encode their Web-
based product data in ad hoc formats for their electronic product

catalogues (EPCs). The reason is simple: they are financially or
technically difficult to join in any existing product standards [14].
This situation largely prevents SMEs from participating the
emerging global electronic marketplaces and seriously weakens
SMEs’ survivability and competitiveness [11]. A realistic issue is
thus how our researches can help SMEs participate the emerging
global electronic marketplaces. In another word, how can we en-
able SMEs to successfully exchange their ad hoc product data?

Central to the issue of ad hoc product data exchange is how to
represent, transform and compare the contexts of these ad hoc
data from various SMEs [14].

Ad hoc product data have several important characteristics. (1)
Inconstant: most ad hoc product data are encoded in heterogene-
ous EPCs following no standards, and easy to change without no-
tice. (2) Small-scale: most ad hoc product data exist in heteroge-
neous EPCs of SMEs that only have several or tens of products.
(3) Irregular: ad hoc product data are stored in different storage
formats, which, in general, can be classified as XML product
files, relational databases and coded Web pages. (4) Heterogene-
ous: firms often adopt their local languages or dialects to encode
their ad hoc EPCs even though the data semantics might be the
same. (5) Numerous: there are millions of heterogeneous EPCs
distributed around the world such as in SMEs, of which each is a
“semantic community” [14][27].

The characteristics of ad hoc product data indicate that a solu-
tion to the issue of context representation, transformation and
comparison for ad hoc product data exchange is urgently needed.

Nevertheless, it is a great challenge to achieve such a solution.
Most current approaches for product data exchange are mainly
focused on enabling data exchange between various kinds of
product standards. For example, Omelayenko and his collabora-
tors [22][24][25] propose to integrate de facto industrial product
standards by building the map relationships in the levels of docu-
ments, objects and vocabularies. Dogac et al advocate integrating
several standards by exploiting RosettaNet’s public processes and
UDDI’s public registries [6]. Bergamaschi et al [3] adopt semiau-
tomatic approach to associate/map product terms of product clas-
sification standards that are differently classified or coded. Few
researchers specialize in providing solutions to ad hoc product
data exchange except some of our previous researches
[12][13][14][15].

This paper aims to provide a solution to the above issue and is
devoted to discussing how contexts can be represented, trans-
formed and compared through a novel concept-centric catalogue
engineering approach for ad hoc product data exchange between
SMEs. This approach decomposes EPCs into sets of hierarchi-
cally represented concepts, which construct contexts for ad hoc
product data exchange. The concept-centric catalogues are mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DocEng’03, November 20–22, 2003, Grenoble, France.
Copyright 2003 ACM 1-58113-724-9/03/0011…$5.00.

121

eled in a set of specially designed XML documents called XML
PRODUCT MAP (XPM).

The remaining part is arranged as following: Section 2 dis-
cusses the previous works related to the theme of this paper. Sec-
tion 3 lays the foundation of concept-centric context representa-
tion. Section 4 discusses XML representation strategy for global
product catalogue. In Section 5, context transformation is dis-
cussed based on a novel XML product map. Section 6 discusses
context comparison. An example is given to overview the in-
volved operations in Section 7. The final section discusses some
related works in catalogue engineering, concludes the paper and
proposes several future works.

2. PREVIOUS WORKS
2.1 Concept-Centric Document Analysis

Conventionally, there are three kinds of analytical approaches
for document engineering: document-centric analysis, data-centric
analysis and document/data combined approach. “Document
analysis is often conducted with the goal of abstracting a logical
model from heterogeneous instances and encoding it as an SGML
or XML schema. The schema enables the replacement of ad hoc,
inconsistent or incomplete formatting with a stylesheet that ap-
plies presentation semantics in a consistent fashion to any in-
stances that conforms to the schema” [9]. However, schema-based
document analysis cannot detect semantic conflicts that cause
data interoperation problems even though two schemas are struc-
turally the same (cf. [10][17]). For example, we cannot guarantee
that two refrigerators in two companies are semantically the same
even though they apply for a same schema in which <!ENTITY
refrigerator “An appliance, a cabinet, or a room for storing food
or other substances at a low temperature”> is given. One firm
may refer “refrigerator” as “domestic refrigerator” and the other
may refer it to the meaning of “electronic portable cooler for trav-
eling purpose”, because we have no mechanisms to guarantee that
two independent firms commit the schema definitions in exact
meaning interpretation. More seriously, most SMEs develop their
electronic product catalogues following no standard schemas. It is
difficult and nearly impossible to apply for any stylesheets to
transform millions of catalogue documents that are heterogene-
ously represented.

Data analysis inherits the same problems from document
analysis, except that the granularity of semantic heterogeneity is
smaller. Data analysis focuses on object levels, such as product
representations but not catalogue representations. Detailed prob-
lems of semantic conflicts between product representations are
documented in the works of [13][23].

To reduce semantic conflicts to achieve flexibility, exactness
and evolvability for ad hoc product data exchange between vari-
ous EPCs, we have proposed a concept-centric approach for cata-
logue engineering [12][13]. This approach regards a catalogue as
a set of meta concepts uniquely identified by vectors in a vector
tree defined in Definition 1. Catalogue representations are based
on semantic concepts but not on schemas of documents or objects.
Definition 1: Meta Concept

A meta concept is a vector on a vector tree (Ai
1, …, Ai

k) where
(1) level is k∈{1,…,n}, (2) position is i∈{1,…,n} of each A, (3)
parent is a vector (Ai

1, …, Ai
k-1) and ancestor is a set of vectors

(Ai
1, …, Ai

k-x) with 1 ≤ x < k and k ≠ 1, (4) child is a set of vectors
(Ai

1, …, Ai
k+1) and descendants is a set of vectors (Ai

1, …, Ai
k+x)

with x ≥ 1, (5) root is a vector (Ai
1, …, Ai

k) with k = 1 and i = 1,

and (6) siblings are a set of vectors (Ai
1, …, Ax∈i

k). For simplicity,
we notate a vector as <k, i>.

We have mapped vectors onto concepts in a catalogue, and
identify product concepts with product concept identifiers, no-
tated as PID<k, i>, and identify attribute concepts with attribute
identifier, notated as AID<m, n>. A complete concept is called
concept internal identifier IID = (PID<k, i>, AID<m, n>), where
PID<1, 1> is the root concept of a catalogue while AID<1, 1> is
the root concept of a product.

2.2 Concept Exchange Framework
Based on the meta concept defined, we have proposed a con-

cept exchange framework to exchange product data [13]. In this
framework, concepts are differentiated as local concepts and
common concepts. Local concepts are ad hoc generated in local
product catalogues of various “semantic communities” [14][27]
such as different SMEs, which are not semantically interoperable
because they are ad hoc formatted and represented. Common con-
cepts are generated based on standards in interoperable product
catalogues of product catalogue providers and are used as seman-
tic mediators for local product catalogues. Local concepts of dif-
ferent ad hoc local product catalogues interoperate each other
through globalizing them into common concepts. New local con-
cepts are generated by localizing common concepts, thus they can
interoperate each other. The product data exchanges between dif-
ferent catalogue providers are achieved by maintaining a repli-
cated document structure of common concepts.

2.3 Concept-Centric Product Data Model
Following the concept exchange framework [13], we have pro-

posed a concept-centric product representation to decompose a
product catalogue as a set of concepts: catalogues, products, at-
tributes, and value types [12]. A product is electronically repre-
sented in a 3-tier triple (product concept, product annotation,
product structure (attribute concept, attribute annotation, attribute
structure (value concept, value annotation, value structure))). This
product representation model has been revised in [15] and is re-
stated as a model of n-level 4-tuple (product concept, product an-
notation, product link, structure (attribute concept, attribute anno-
tation, attribute link, structure (attribute concept, attribute annota-
tion, attribute link, structure (…)))). This revision has simplified
the catalogue representation to ease the algorithm design and in-
clude spatial information of a concept.

2.4 Context Representation Model
The fact that product catalogues are Web-distributed in differ-

ent semantic communities indicates that semantically same local
concepts in different local catalogues may be heterogeneous in
several ways: concept annotation, concept structure and different
data sources. This situation is particularly severe for SMEs where
product catalogues are ad hoc formatted and represented. This
observation leads us to consider the semantic contexts of concepts
in different semantic communities. In our research of [14], a con-
text representation model is proposed to present the publicly un-
derstandable semantic contexts of product data. The semantic
contexts are captured in two steps: transforming irregular local
product definitions stored in various data sources to canonical lo-
cal product representations, and transforming canonical local
product representations into common product representations.

2.5 Transformation of Ad Hoc Product Data
Nevertheless, the context representation model [14] is only a

high-level proposal. It does not describe the crucial transforma-

122

tion process of how to transform irregular local product defini-
tions into canonical local product representations. It does not pre-
sent the details about the public understandable context represen-
tation and comparison between canonical local product represen-
tations and public common product representations.

Our latest research [15] has proposed a concept-centric trans-
formation approach that captures ad hoc product data in various
local data sources and transforms them into canonical local prod-
uct representations. The transformation makes concepts canonical
and comparable within enterprise-wide systems. It has outputted a
set of canonical local product representations that can further in-
teract with public understandable common product representa-
tions.

However, the issue of how to represent publicly understand-
able contexts and how to compare these contexts for product data
exchange is not discussed.

This paper is, therefore, to solve this problem by dedicating
concept-centric context representation, transformation and com-
parison for ad hoc product data exchange.

3. CONTEXT FOUNDATION
How can an attribute, a product or a catalogue in one Web-

based SME be understood in another? In another word, how can
two heterogeneous contexts be recognized mutually? This section
will propose a novel generic concept-centric context representa-
tion approach to lay the foundation of catalogue engineering.
3.1 Generic Concept Representation

A catalogue, a product, a product attribute or an attribute value
is a concept. The semantics of a concept generally can be notated
by three parts: a concept meaning, a concept structure that is
again characterized by a set of concepts, and a set of particular
values specifying those concepts that have no characteristics any
more (leaf concept of the concept chain). This notation of a con-
cept is consistent with Barthes’s “system of signification” [1] and
“order of signification” [2], where a denotation leads to a chain of
connotations. For example, “refrigerator” is a meaning and “di-
mension, color” is a structure where “dimension, color” are again
concepts. “Red” can be the particular value of the “color” concept
because “color” cannot have any lower level concepts. In contrast,
“dimension” may still have lower level concepts such as “width”,
“length” and “height”.

More formally, we introduce three terms to describe concept
semantics: denotation, connotation and particular.
• Denotation is a piece of natural language annotation that de-

scribes “the definitional, ‘literal’, ‘obvious’ or ‘commonsense’
meaning of a sign” [4] for a concept. It is generally specific to
a certain “semantic community” [14][27] that shares the same
perspectives to a concept, such as “refrigerator” for English
speakers. Mapping onto a product representation [12][15], it
can be defined in a functional relationship as “denotation:
(identifier, annotation, link) concept”.

• Connotation is an internal structure of a concept that “is used
to refer the social-cultural and ‘personal’ associations … of the
interpreter’s class, age, gender, ethnicity and so on” [4]. It ex-
presses how a concept can be hierarchically decomposed into a
set of lower level concepts to constrain and explicate the deno-
tation. For example, “dimension, color” constrains the refrig-
erator by enumerating and explicating the features of a refrig-
erator. Connotation can be defined as a containment relation-
ship “connotation: (concept, …, concept) concept”.

• Particular is a specific concept that refers to a concrete or con-
ceptual entity instance or property value. For example, data
“29”×33”×66”, “silver” and “228 kw/h per year” are particular
concepts of “dimension, color, energy consumption” for a cer-
tain specific refrigerator. A particular is an instantiation rela-
tionship “particular: instance concept”.
To be consistent with general used terms, we call those con-

cepts without carrying particular values as meta concepts and the
particulars as instance concepts. Meta concepts can be utilized to
express publicly common meanings of a concept domain. An in-
stance concept can refer to an instance of a meta concept at leaf.

3.2 Heterogeneous Concept Representation
Observing the business world, we can find that people ex-

change business data through a common language such as English.
However, people may also make deals in their common national
languages or community languages. Within a company, people
even use dialects to format their business information. Mapping
this observation onto business organizations and concept expres-
sions, the concept heterogeneity problem can be depicted in Fig.1.

Global
Language

Community
Languages

Dialects

Particular
Meanings

Common
Concepts

Apposition
Concepts

Local
Concepts

Particular
Concepts

Global Market

Reginal Markets

SMEs

Heterogeneous
Data Store

Fig. 1: Levels of heterogeneous concepts
Fig. 1 indicates that the meaning of a concept, if heterogene-

ously stored in different data stores in an SME, should be inte-
grated for communication. What’s more, if it desires to exactly
convey a concept to another unknown SME for business interop-
eration, it should ascend the chain from enterprise to regional
markets and/or global marketplace and then descend. This is be-
cause each organization or market is an independent semantic
community where heterogeneous concepts are generated.

For convenience, we call concepts that are represented in
global language are common concepts. Respectively, apposition
concepts are from community languages, local concepts are from
SMEs’ dialects and particular concepts are from the particular
meanings of heterogeneous data stores.

3.3 Generic Context Representation
3.3.1 Context Definition and Representation

A context is a concept definition relating to two perspectives to
the definition. Since a concept is defined by a denotation, a chain
of connotation and a set of particulars, a concept definition can be
expressed as a vector tree that contains many sub-tree concepts
(see Definition 1). Any perspectives of that full concept tree are
specific contexts with respect to the full concept tree. For example,
in Fig. 2, the sub tree of (C1, C2, C6, C7) is a context of the full
concept tree (C1…C13) and (C1, C3, C8, C9, C10) is another
context with respect to the concept definition of C1. Given a full
concept tree, a perspective of the full concept tree, which takes
only a sub tree, is a partial context. The perspective that takes the
full concept tree is a full context. The relationship between partial
context and full context is an inclusion relationship (⊆):

Partial Context ⊆ Full Context

123

Homogeneous context is a concept definition relating to two
perspectives that happen in a same semantic community where
the elements that construct perspectives are mutually understand-
able. Therefore, for homogeneous contexts, they are either partial
or full. When comparing two partial contexts, they may be
equivalent, intersected or disjoint.

Heterogeneous context is a concept definition relating to two
perspectives that happen in two different semantic communities.
Specifically, the elements that construct perspectives are different.
For example, though (C1, C2, C6) and (Ac1, Ac2, Ac6) may refer
to the same concept, the ways they form their perspectives are
different. A heterogeneous context with respect to two perspec-
tives is useless unless one of the perspectives is transformed to be
consistent with another perspective.

C1

C2 C3 C4 C5

C6 C7 C8 C9 C10 C11 C13C12

AC1

AC2 AC3 AC5

AC6 AC8 AC9 AC12

AC1

AC3 AC5

AC10 AC12 AC13

AC2

AC6

LC1

LC3

LC8 LC9

LC1

LC3

LC10

PC8 PC9 PC10

Fig. 2: Context analysis and representation

3.3.2 Context Transformation on Data Exchange
Chain

Abstracted from Fig. 1, we have found that product concepts
must experience a series of transformations moving on a chain of
“particular concepts⇒local concepts⇒(apposition concepts)⇒
common concepts⇒(apposition concepts)⇒local concepts⇒ par-
ticular concepts” to enable the exchange of product concepts be-
tween two SMEs. We call this chain as data exchange chain.
Mapping this chain onto the Fig. 2, two relationships could be
found: partial context relationship and heterogeneous context re-
lationship. For example in Fig. 2, if {P} are particular concepts,
{L} are local concepts, {A} are apposition concepts and {C} are
common concepts, then {P}⊆{L}⊆{A}⊆ {C}. Therefore, the re-
lationship between them is partial. However, these concepts are
also heterogeneous because they belong to different semantic
communities. Therefore, they need to be transformed before con-
text comparison.

Formally, these two contextual relationships between hetero-
geneous product concepts can be expressed by several specific
contextual relationships:
Instance Context: particular concept⇒

 partial local concept⊆local concept
Local Context: local concept⇒

 partial apposition concept⊆apposition concept
Common Context: apposition concept⇒
 partial common concept⊆common concept
where “⇒” is one-to-one transformation relationship and “⊆” is
inclusion relationship.

These specific contextual relationships are the foundation of
designing concept-centric electronic product catalogues to meet
the requirements of exactness, flexibility and evovability [13].

4. XML REPRESENTATION STRATEGY
FOR GLOBAL PRODUCT CATALOGUE

Applying the generic context representation, this section will
develop an XML representation strategy for representing a global
product catalogue system.

4.1 A Global Product Catalogue System
In [13], we have proposed a strategy for constructing interop-

erable electronic product catalogues for a global product cata-
logue system. In [15], we have simplified meta concept types of a
product catalogue to “product” and “attribute”. A global product
catalogue system can thus be designed as a set of hierarchical
meta product concepts and many sets of attribute concepts, where
each catalogue concept is a product concept tree, a product con-
cept is an attribute concept tree, and a leaf attribute concept may
connects to many instance concepts.

Common
Catalogue
Common
Products

Common
Product
Common
Attributes

Apposition
Products

Apposition
Attributes

Apposition
Products

Apposition
Attributes

Apposition
Products

Apposition
Attributes

Local
Catalogue

Local
Products

Local
Products

Local
Attributes

Instance

Values

Instance

Values

Instance

Values

Common
Product

Catalogues
(IEPC)

Local
Product

Catalogues
(LEPC)

Fig. 3: A global product catalogue system: IEPCs and LEPCs

Following the product data flow on the data exchange chain
and the nature of each semantic community along the chain, we
divide the global product catalogue system shown in Fig.3 into
following parts:
• Heterogeneous data stores may be XML files, relational data-

bases or ad hoc web pages where dynamic instance values are
generated from instance concepts.

• Local catalogues include local products where each has a set
of local attributes. All of them are local concepts.

• Apposition products where each consists of a set apposition
attributes are apposition concepts that different communities
may understand.

• Common catalogues comprise common products where each
consists of a set of attributes. They are all common concepts.
Common concepts are publicly understandable in a global

scope. Apposition concepts are understandable in a certain com-
munity, while local concepts are private and only understandable
in an enterprise. Instance concepts are special and specific, which
are differentiated in different data stores.

Colloquially, we jointly call common catalogues, common
products and apposition products as common product catalogues
(IEPCs) to characterize the public nature, and collectively call
local catalogues, local products and instances as local product
catalogues (LEPCs) to characterize the private nature. It is obvi-

124

ous that the partial and heterogeneous contextual relationships
exist in the underlying global catalogue system.

Context: LEPC ⇒ partial IEPC ⊆ IEPC
To have IEPCs and LEPCs interoperable, it is desirable to en-

gineer the global product catalogue in a consistent and semantic
understandable way.

4.2 Limitations of XML Markup
XML as a widely used markup language has a lot of standard

Internet supports. The global catalogue system is Web-based and
may be benefited from the standard XML language. Nevertheless,
how to exploit XML’s benefits should be discussed, especially
how to overcome the limitations of XML markups for semantic
descriptions.
• Self-describing markup approach for describing semantics is

imaginable [5][26] for markup desingers. We cannot reply on
markups to solve interoperability problems between different
semantic communities such as SMEs. For example, a
metamarkup <!ENTITY refrigerator “an appliance, a cabinet,
or a room for storing food or other substances at a low tem-
perature”> may not be understandable in different SMEs, es-
pecially when different enterprises are independently format-
ting their product catalogues.

• Inference to markup semantics is not guaranteed exact. “A
DTD presents only a vocabulary and a syntax for that vocabu-
lary – it does not provide a semantics for the vocabulary” [26].
In applying AI technologies to retrieve product information,
inexactness and errors are found for terms [8].

• Semantic relationships between markups given by language
designers are often not fully captured by software developers,
and thus gradually software cannot be semantically interoper-
ated with each other because of this cognitive problem.

• Heterogeneous document schemas are everywhere in inde-
pendent SMEs. Different independent firms may use the same
popular markups by accident but mean wholly differently.
Synonymous and homonymous markups created in such cir-
cumstances are difficult to be structured in glossaries such as
the proposed in ISO TC 37 [16], because standards are not ref-
erenced to write terms.
Reflected in global catalogue system design, these limitations

cause semantic conflicts in ad hoc product data exchange [13][14].

4.3 A Strategy for XML Representation
The limitations of XML markup destine that we cannot di-

rectly use markup for semantic interoperation. However, we rec-
ognize that XML structure and its syntax can be utilized to repre-
sent IEPCs and LEPCs. In this section, we present a novel con-
cept-centric representation strategy by mapping IEPCs and
LEPCs onto XML language to solve semantic interoperation
problem.

A global product catalogue system can be decomposed into
two basic constructs: concept and classifier. Concepts are cata-
logue’s elements and classifiers are the relationships between the
concepts. A catalogue, a product, an attribute or a value is a con-
cept, which can be denoted and connoted as discussed in Section
3. The structural relationship between these concepts is a parent-
child relationship. Yen et al [32] in their research confirm this
point: “from a structural point of view, the electronic catalog can
be defined as a collection of classified information and presented
in forms of a catalog tree”. Therefore, it is plausible if we adopt a
strategy to map the global product catalogue system onto an XML
tree with each node as a concept. This strategy is natural and in-

tuitive. To facilitate the mapping, we describe the strategy in sev-
eral general rules in forms of XML DTDs:
Rule 1 (connotation): given a meta concept that are connoted by a
set of hierarchically arranged meta concepts [12], then it can be
mapped onto an XML document tree defined in an XML DTD:

<!ELEMENT concept (concept*)>
where the root concept element is a catalogue concept or a prod-
uct concept which only allows to occur once. The connotation (a
set of concepts) of the catalogue or product concept maps onto a
set of child concept element nodes. A child concept element node
is again connoted by a set of its direct child concept element
nodes until to the leaf nodes.

This strategic rule naturally constructs a catalogue consisting
of products or a product comprising attributes. For example:

<concept annotation= “refrigerator”>
 <concept annotation= “price”/>
 <concept annotation= “dimension”>
 <concept annotation= “width”/>
 <concept annotation= “length”/>
 <concept annotation = “height”/>
 </concept>
</concept>.

Rule 2 (denotation): given a meta concept that is denoted by a 4-
tuple (concept, annotation, link, structure) [15], then its XML
DTD is:
<!ATTLIST concept iid NMTOKEN #REQUIRED
 annotation CDATA #REQUIRED
 link CDATA #IMPLIED
 structure CDATA #IMPLIED>
where iid is the NMTOKEN form of calculable IID(PID<k, i>,
AID<m,n>). Annotation is the semantic description of the concept,
which could be any natural languages or dialects dependent on the
underlying semantic communities. Link is the Web URL address
of the concept. Structure refers to an XML file that connotes the
concept.

For example, a refrigerator in a French company can be:
<concept iid=“1-52-14-15-1” annotation = “réfrigérateur” link=“”
structure=“réfrigérateur.xml”>.

Rule 3 (classifier): given a set of meta concepts that are arranged
in an XML tree according to Rule 1, then each concept can be
identified by an internal identifier IID<k, i> defined in Definition
1, making each IID equals to the concept element node position in
the underlying XML.

Concept(IID) := NodePosition(concept)
Specifically, for a catalogue, the root PID<1, 1> corresponds
XML document root position, and all product concepts PID<k, i>
correspond other child concept element node positions. For a
product, AID<1, 1> corresponds the XML document root node
position and AID<m, n> correspond other XML concept element
node positions. This rule naturally maps an XML tree to the vec-
tor concept tree that defines the identifiers of all concepts.

The benefits of this rule are: (1) the semantics of a concept can
be replaced and dynamically traced through a calculable PID or
AID by querying the XML concept element node position. The
semantics described in the concept element position is exactly
same as the semantics what IID identified but heterogeneously
denoted elsewhere. Therefore, in any heterogeneous systems, se-
mantics can be arbitrarily represented only if an IID in any sys-
tems are consistent. (2) IID is a vector that records all the infor-
mation of current concept’s ancestor information, which is gene-
alike. For example, a refrigerator may be encoded as IID(1, 52, 14,
15, 1). Query the information of any ancestor is direct and effi-

125

cient. For example, in a given context, IID of “domestic kitchen
appliances” will always have IID(1, 52, 14, 15) as the parent of
IID(1, 52, 14, 15, 1). (3) The mutation of child concepts produces
the natural evolution of a product or a catalogue, where the mu-
tated semantics can be exactly captured in all governing hetero-
geneous systems. (4) Another possible side benefit is that its
query speed for the semantics of a given term might be increased,
because the concept node position is directly given for query (cf.
[21]). The actual performance may depend on XML parsers in use.
Rule 4 (Instantiation): given an instance concept that exists in a
certain data store, then this concept is instantiated by a leaf meta
concept and is placed in an XML document stipulated by DTD:

<!ELEMENT concept (#PCDATA)>
<!ATTLIST concept locIID NMTOKEN #REQUIRED

 link CDATA #REQUIRED
 type NMTOKEN #REQUIRED>
where locIID is the identifier in a local catalogue, link is the cur-
rent retrieved value location and type refers to the type of data.

This rule defines how the particular value of a leaf attribute is
retrieved from heterogeneous data sources such as relational data-
bases or other XML files. For example, an instantiation of a leaf
meta concept may be:
<instance><concept locIID = “1-2-3p-2-2” link=
“color” type= “code”><![CDATA[SELECT color FROM
table]]></concept></instance>
to dynamically retrieve a value in run-time. This strategy main-
tains all legacy systems by plugging a data retrieval tool.

The concept-centric representation strategy guarantees that all
LEPCs and IEPCs are semantically merged and classified by shar-
ing IIDs that are dynamically generated from the concept element
node positions of the underlying XML documents.

5. CONTEXT TRANSFORMATION
To implement the above XML representation strategy, we

should understand how the catalogue components are related to
each other, and what actions we should take to have different
components work together for achieving consistent semantic flow
along data exchange chain. In this section, we describe the cata-
logue component relationship in an XML product map (XPM) and
transform the heterogeneous contexts between these components
for semantic interoperation.

comProd appoProd

locProd

instData

comCat

locCat

appoProd

locProd

locCat

instData

comContextcomContext

locContext locContext

instContextinstContext
Data Exchange

Data Exchange Chain

QUERY1 JOINQUERY2

comContext comContext

Fig. 4: XML product map

5.1 XML Product Map
The underlying global catalogue system depicted in Fig. 3 can

be constructed by a series of XML documents that conform to the
proposed XML representation strategy. Along with the data ex-
change chain, different XML files can be designed to correspond
different semantic communities. The Fig. 4 illustrates this docu-

ment flow by explicitly capturing the intentions and activities of
semantic communities in an XML product map (XPM).

XPM defines all the relevant XML documents that are neces-
sary for catalogue designers and users to either join the global
catalogue systems or query semantic product data. Along with the
data exchange chain, we describe two activities of catalogue de-
signers and catalogue users: LEPC join in IEPC and LEPC users
query ad hoc product data. In the following, we classify these
XML documents and briefly discuss their general features.

XPM documents can be classified in two types according to
the semantic data type and the ability of generating IID, shown as
in Table 1. Metadata documents that provide the abstract seman-
tics of ad hoc product data while instance data documents carry or
generate the instantiated values referring to the corresponding ab-
stract metadata. IID or locIID generable documents can generate
unique IID/locIID for the newly insert concepts for the use of
global catalogue system or local catalogue system while
IID/locIID un-generable documents can only use the generated
IID/locIID to refer their established concepts.

Table 1: XPM document type
Document Type Semantic Data Type IID Generability

Metadata locCat, locProd,
comCat, comProd,
appoProd

Instance Data instData
IID Generable/
locIID generable (*)

 comCat, comProd,
locCat*, locProd*

IID Un-Generable instData, appoProd
In details, these documents have the following features:
The comCat.xml and comProd.xml. The comCat.xml con-

sists of a set of product concepts while a comProd.xml consists of
a set of attribute concepts. They are parts of IEPC that provides
public services for LEPC to join and query. They generate com-
mon concept IID when a new concept is inserted.

The appoProd.xml. These documents are created by local
catalogue designers when joining their LEPC into IEPC and are
placed in IEPC for public access of the local products. An appo-
Prod.xml does not generate any concept IID but consist of a set of
apposition concepts semantically equal to common concepts.

The locCat.xml and locProd.xml. They are part of LEPC and
the generated IID is only for local use and called locIID. These
documents can be independently created to form an LEPC. Nev-
ertheless, when an LEPC joins in IEPC, the global IID must be
imported into these documents in connection with locIID.

The InstData.xml. This instance data document carries the
dynamic values of instance concepts that are instantiated from
leaf meta attribute concepts in locProd.xml.

As we have mentioned in Section 4.1, there are partial and het-
erogeneous contextual relationships in the global catalogue sys-
tem. These contextual relationships are activated when JOIN or
QUERY operations are executed on XPM (see Fig. 4). In Section
5.3 and 5.4, we will discuss the heterogeneous relationship in
terms of context transformation. In Section 6, we will discuss the
partial relationship in terms of context comparison.

5.2 Heterogeneous Context Transformation in
JOIN Operations on XPM

JOIN operations on LEPC and IEPC are to insert new product
or attribute concepts into IEPC. It involves context transformation
relating to LEPC and IEPC. Often, JOIN operation can be divided
into three sequential sub operations: browse, retrieve and insert.

126

BROWSE operations on comCat or comProd are to find which
concept on comCat and comProd should be decided as the new
concept insert point. The target is to find the desired common
concepts in the common concept set that are semantically equiva-
lent to the intended concepts for insertion. It is a process of build-
ing heterogeneous common context,

RETRIEVE operations on the comCat, comProd or appoProd
are to extract the insert point concept information. The operation
retrieves the information of the common concept Concept(iid,
∑sibling iids, ∑child iids) and sends them to the local designer’s
user interface for context transformation. It is a process of hetero-
geneous context representation.

INSERT operations on appoProd, locCat and/or locProd are to
insert the new local concept into appoProd for public use and into
locCat and locProd to relate the common concept and the new
local concept. This is a process of heterogeneous context trans-
formation, which makes heterogeneous concepts understandable
each other.

There are two situations of insertion: (1) to add a new common
concept, and (2) to insert an apposition concept conforming an
existing common concept. For the first situation, an LEPC de-
signer is prohibited to add any new common concepts to comCat
or comPro. Adding common concepts is only allowed for IEPC
designers not LEPC designers. The LEPC designers, however,
can propagate the insert requirements to IEPC designers by
launching a collaboration process [12].

Inserting a concept involves two processes: inserting into ap-
poProd and inserting into locProd. These two processes form a
mapping between local concept and common concept by mutual
heterogeneous context transformation. From the viewpoint of ap-
poProd, an apposition concept is inserted by transforming the
common context of a local concept relating to a common concept.
For example, an apposition concept is inserted as:
AppoProd.xml
<concept iid=“” annotation=“community language” link=“” locLink=“”/>
where local concept addressed by “locLink” and annotated by
“community language” has been inserted through the transforma-
tion of a common concept identified by public “iid”.

Viewing from locCat/locProd, the insert process is to trans-
form heterogeneous common context into a homogeneous com-
mon context. The transformation is to relate common concept and
local concept by mapping IID in IEPC onto locIID in LEPC. For
example, a local concept is inserted as:
LocProd.xml
<concept locIID=“” annotation=“local dialects” link=“” iid=“”/>
where a common concept is transformed to a local concept by
relating to a public “iid”.

5.3 Heterogeneous Context Transformation in
QUERY Operations on XPM

A QUERY operation on LEPC triggers a series of sub hetero-
geneous context transformation operations between adjacent het-
erogeneous document sets of LEPC and IEPC.

Given a set of XPM documents, a QUERY operation then re-
quests remote data along the data exchange chain (see Fig. 4) in
the following way: LocCat/locProd⇒comCat/comProd⇒ appo-
Prod⇒locCat/locProd ⇒instData. To facilitate the data query, the
adjacent heterogeneous documents should be able to interoperate
each other for passing the operation semantics. Our strategy to
meet this requirement is to build heterogeneous contexts between
the adjacent heterogeneous documents and then transform them.

Specifically, the strategy is implemented by building the query
concept set and then being compared with the adjacent concept
set to establish the concept identifier mapping. The detailed trans-
formation mechanism is documented in the following steps:
Algorithm (Heterogeneous Context Transformation). Assuming
that the heterogeneous concept sets as heterogeneous contexts for
QUERY flowing on data exchange chain are ordered as:
(1) locConcept(locIID<m, n>, IID<k, i>, {local denotation})
(2) comConcept(IID<k, i>, {common denotation})
(3) appoConcept(<IID<k, i>, {apposition annotation})
(4) locConcept(locIID<m, n>, IID<k, i>, {local denotation})
(5) parConcept(locIID<m, n>, {values})
Then, the adjacent heterogeneous contexts are orderly trans-
formed (⇒) by checking the inclusion (⊆) and equivalence (=)
relationships between two sets of concept identifiers:
(1) locConcept⇒comConcept if IID(locConcept)⊆IID(comConcept)
(2) comConcept⇒appoConcept if IID(appoConcept)⊆IID(comConcept)
(3) appoConcept⇒locConcept if IID(appoConcept)=IID(locConcept)
(4) locConcept⇒parConcept if locIID(parConcept)⊆locIID(locConcept)

By this heterogeneous context transformation algorithm, het-
erogeneous semantic representations contained in denotations are
transformed but unchanged for different semantic communities.
This algorithm has not only solved the semantic conflicts between
independent SMEs, but also given the solution to some problems
of legacy systems, customizations and personalization.

6. CONTEXT COMPARISON
Heterogeneous context transformation has resolved the prob-

lem of heterogeneous semantic representations. Nevertheless,
when multiple parties are involved, multiple contexts may need
parallel comparison to facilitate what reactions the receiver
should take. The process of handling multiple contexts at the des-
tination is context comparison, which assumes all the compared
contexts are homogeneous.

6.1 Homogeneous Context Comparison
Given two homogeneous contexts context1 and context2, the

context comparison between them is then defined by mapping of
a couple:

ctxComp(ctx1, ctx2) = Map<(locIID1, V1), (locIID2,V2)>
where locIID and V are two components of the compared contexts.

A context is a possibly partial context compared with another
context in the same semantic community. If the compared con-
texts are heterogeneous, they should be transformed first. A con-
text can be simplified as ctx = (locIID, V) because concept identi-
fier and instance data are enough to form a context structure. For
this reason, context comparison is based on the components of
locIID and V of product representations.

A Map is a specificity relationship between two contexts. Let
ctx1 = <(locIID1, V1), (locIID2, V2), …, (locIIDm, Vm)> and ctx2 =
<(locIID’1, V’1), (locIID’2, V’2), …, (locIID’n, V’n)>, then:

ctx1 ≤ ctx2 if ctx1 is not more specific than ctx2 in terms of ctx2

Since a context is a relative expression of a product concept, it
can be compared both in meta concept level or particular concept
level. When we compare contexts in meta concept level, we com-
pares the two set of locIIDs to present:
meta concept specificity:

locIID1 ≤ locIID2 iff locIID1 ⊆ locIID2

127

When we compare contexts in particular concept level, we
compares the two sets of values Vs to present:
particular concept specificity:

V1≤V2 iff V1 locIID1 ⊆ V2 locIID2
The context comparison is to find out the value of the Map.

How is one context more specific than the other context? Speci-
ficity relationship defines the extent of the similarity between two
product concepts and the extent of interoperability between two
product representations.

The following section will go deep to examine the specificity
relationship between two contexts.

6.2 Semantic Similarity
Two contexts are compared to find out the semantic similarity

between two contexts’ underlying product concepts by building a
Map between two sets of (locIID, V). The value of Map deter-
mines the semantic similarity between two product concepts.

In comparing contexts, we are interested in finding two types
of semantic similarity exposed by meta concept specificity rela-
tionship and particular concept relationship: meta concept similar-
ity and particular semantic similarity.

A detailed classification of these two relationships will be
beneficial to business interoperation. To understand meta concept
similarity is particularly useful for processing business inquiry
and product search where no specific needs of product values are
required. For example, an inquiry for refrigerator can be refrigera-
tor(price (currency), color, dimension(width, length, height), ca-
pacity(gross, freezing)). No particular values are needed. How-
ever, particular semantic similarity is important when a business
quotation is received for comparing the receiver’s product data.
Detailed semantic similarity relationships between two contexts
can be classified in Table 2.

Table 2: Semantic similarity between two product concepts

Relationship ctxComp(ctx1, ctx2)
Meta equivalence Map(locIID1, locIID2) = ALL
Meta intersection Map(locIID1, locIID2) = SOME
Meta disjoint Map(locIID1, locIID2) = NONE
Value equivalence Map(V1 locIID1, V2 locIID2) = ALL
Value intersection Map(V1 locIID1, V2 locIID2) = SOME
Value disjoint Map(V1 locIID1, V2 locIID2) = NONE

In Table 2, three types of semantic similarities are given:
(1) ALL expresses the equivalence relationship between two con-

texts either for meta concept level or for particular concept
level. It is the strongest semantic similarity where two con-
texts’ underlying product representations are fully interoper-
able in their respective concept levels.

(2) SOME expresses intersection relationship between two con-
texts either for meta or particular concept levels. It is weaker
to semantically relate two contexts’ underlying product repre-
sentations. Whether it is useful for semantic interoperation de-
pends on the users’ rules to utilize the intersected semantics.

(3) NONE expresses disjoint relationship between two contexts
either for meta or particular concept levels. It shows the weak-
est semantic relevance between two contexts’ underlying prod-
uct representations. Users are able to utilize this relationship to
prevent product information overloading from Internet and
minimize the systems traffic to improve systems performance.
A more detailed classification can be given. For example, un-

der meta equivalence, there can be value equivalence, intersection

and disjoint. These can be utilized to design different ad hoc data
exchange scenarios.

Common Product Datalogue (IEPC)
comCat.xml (English)
<concept iid="1" annotation="UNSPSC" link="boo.com/en/unspsc.xml" scope="en">

 <concept iid="1-52" annotation="domestic appliances and supplies and
 consumer electronic products" >

 <concept iid="1-52-14" annotation="domestic appliances" >

 <concept iid="1-52-14-15" annotation="domestic kitchen appliances" >
 <concept iid="1-52-14-15-1" annotation="refrigerator" structure
 ="boo.com/en/product/1-52-14-15-1.xml"/>
 </concept></concept></concept></concept>

comProd.xml (English)
<concept iid="1-52-14-15-1" annotation="refrigerator"
 link="boo.com/en/product/1-52-14-15-1.xml" scope="en">
 <concept iid="1-52-14-15-1p-1" annotation="price">
 <concept iid="1-52-14-15-1p-1-1" annotation="currency"/>
 <concept iid="1-52-14-15-1p-1-2" annotation="value"/>
 </concept>
 <concept iid="1-52-14-15-1p-2" annotation="gross capacity"/>
 <concept iid="1-52-14-15-1p-3" annotation="color"/>
</concept>

appoProd.xml 1(French)
<concept iid="1-52-14-15-1" link="boo.com/fr/appo/fr1-com/1-52-14-15-1.xml"
 locLink="fr1.com/refrigerateur.xml"/>
<concept iid="1-52-14-15-1p-1"/>
<concept iid="1-52-14-15-1p-1-1"/>
<concept iid="1-52-14-15-1p-1-2"/>
<concept iid="1-52-14-15-1p-3"/>

appoProd.xml 2 (English)
<concept iid="1-52-14-15-1" link="boo.com/en/appo/en1-com/1-52-14-15-1.xml"
 locLink="en1.com/fridge.xml"/>
<concept iid="1-52-14-15-1p-2"/>
<concept iid="1-52-14-15-1p-3"/>

Local Product Datalogue (LEPC)
locProd.xml 1 (French)
<concept iid="1-52-14-15-1" annotation="refrigerateur" link="fr1.com/refrigerateur.xml"
 locIID="1-3-4-5-5"/>
<concept iid="1-52-14-15-1p-1" locIID="1-3-4-5-5p-1" annotation="prix"/>
<concept iid="1-52-14-15-1p-1-1 locIID="1-3-4-5-5p-1-1" annotation="devise"/>
<concept iid="1-52-14-15-1p-1-2" locIID="1-3-4-5-5p-1-2" annotation="valeur"/>
<concept iid="1-52-14-15-1p-3" locIID="1-3-4-5-5p-2" annotation="couleur"/>

locProd.xml 2 (English)
<concept iid="1-52-14-15-1" annotation="fridge" link="en1.com/fridge.xml"/>
<concept iid="1-52-14-15-1p-2" locIID="1-9-7-4-3p-1" annotation="gCap"/>
<concept iid="1-52-14-15-1p-3" locIID="1-9-7-4-3p-2" annotation="clr"/>

instData.xml 1
<concept locIID="1-3-4-5-5p-1-1"
 link="fr1.com/data/refrigerateur.xml#1-3-4-5-5p-1-1">Fr</concept>
<concept locIID="1-3-4-5-5p-1-2"
 link="fr1.com/data/refrigerateur.xml#1-3-4-5-5p-1-2">2500</concept>
<concept locIID="1-3-4-5-5p-2"
 link="fr1.com/data/refrigerateur.xml#1-3-4-5-5p-1-2">white</concept>

instData.xml 2
<concept locIID="1-9-7-4-3p-1" link="en1.com/data/fridge.xml#1-9-7-4-3p-1">
 <![CDATA[SELECT gCap FROM fridge WHERE quote="normal"]]</concept>
<concept locIID="1-9-7-4-3p-2" link="en1.com/data/fridge.xml#1-9-7-4-3p-2">
 <![CDATA[SELECT clr FROM fridge]]</concept>

Fig. 5: An XPM Example

7. AD HOC PRODUCT DATA EXCHANGE
ON XPM: AN EXAMPLE

The major purpose of representing, transforming and compar-
ing contexts is to exchange ad hoc product data for business inter-
operation. In this section, we discuss four concept-centric context
operations of context query, concept insert, quotation request and
offer response by using the example data in Fig. 5 to illustrate the
ad hoc data exchange cycle.
QUERY. An operation on an LEPC queries remote contexts from
IEPC by a “pull” strategy. Suppose that an SME (en1.com) is
querying a white refrigerator by sending a query operation.
(1) Query((1-9-7-4-3p-2, white, receiveURL, en1.com)) //prepare data
(2) Transform: 1-52-14-15-1p-3 1-9-7-4-3p-2 //instContext transform
(3) Send(1-52-14-15-1p-3, white, receiveURL, en1.com) //to comCat
(4) Validate: 1-52-14-15-1p-3 ⊆ IID // common context transform
(5) Match: Enumerate (1-52-14-15-1p-3 = IID(appoProd - en1.com)) //

appoContext transform to find fr1.com for meta equivalence
(6) Compare(white, Values(<locLink(fr1.com) 1-52-14-15-1p-3 >)) //

context comparison to find value equivalence

128

(7) Return: receiveURL locLink(fr1.com)
INSERT. An operation on an LEPC inserts a concept to appo-
Prod and locProd to enrich a context representation. Suppose that
en1.com wants to inquire the price of the white refrigerator from
fr1.com. When it makes the inquiry, it finds that it lacks of price
concept and then inserts price concept.
(1) Browse: Price comProd(“refrigerator”) comCat(“en”)
(2) Retrieve: IID(“price”), IID(“currency”), IID(“value”)
(3) Insert on locProd/appoProd: IID(“price”) childOf(“refrigerator”)

etc. // since no instData, no locLinks are inserted in appoProd.
(4) Create on locProd: locIID IID and annotation locIID // for

(3))/(4), only metadata inserted.
REQUEST. An operation on an LEPC requests a response from
the remote SME by a “push” strategy. Suppose that en1.com tests
whether fr1.com can satisfy its product requirement by including
the information of the inquirer for fr1.com’s decision.
(1) Request(request, inquirerInfo, fr1.com, <(1-52-14-15-1p-1-1, USD,

receiveURL), (1-52-14-15-1p-1-2, 300, receiveURL), (1-52-14-15-
1p-3, white, receiveURL)>) // send request and prepare blank re-
sponse sheet

(2) Transform(<(locIID IID, annotation locIID, value(“en1.com”))>)
// transform context, and copy inquierInfo and receiveURL to make
inquiry sheet. The “USD” and “Fr” need currency conversion tool.

(3) Compare(<(value(“en1.com”), value locIID)>) // compare two con-
texts by considering rules for en1.com if any

RESPONSE. An operation on LEPC responds a request opera-
tion from a remote SME. Suppose that fr1.com responds the re-
quest from en1.com.
(1) Response(<(1-52-14-15-1p-1-1, USD, receiveURL), (1-52-14-15-1p-1-
2, 350, receiveURL), 1-52-14-15-1p-3, white, receiveURL)>)

The operations of query, insert, request and response constitute
the major operations on XPM documents. Other operations can be
developed in future to enhance the functionalities.

8. DISCUSSION AND CONCLUSION
Concept-centric catalogue engineering approach to representa-

tion, transformation and comparison of contexts for ad hoc data
exchange between SMEs is novel and promising.

In constructing electronic product catalogues (EPC) for ex-
changing product data, traditional approaches focus on product
ontologies and vocabularies for product data interoperation. For
example, smart catalogue [18] dynamically maps product terms
from multiple ontologies through facilitators. This approach can-
not prevent the interoperability problem between multiple ontolo-
gies. MEPCs [19] and Internet EPC [31], on the other hand, pro-
vide a global shared vocabulary by statically mapping product
terms through one or more mediators. By this approach, all enter-
prises can interoperate with each other if they stick to and have no
misunderstandings about the shared ontology. Both approaches
need enterprises to have available ontologies of the target interop-
erating systems. However, ontology approach may be expensive
and technically difficult for most SMEs. In addition, the ad hoc
nature of SMEs indicates that SMEs often follow no rules to en-
code their product catalogues.

Recent approaches for constructing EPCs for product data ex-
change are more industry-oriented, which emphasizes on the
product standards such as cXML (www.cxml.org), xCBL
(www.xcbl.org), UNSPSC (www.unspsc.com) and ecl@ss
(www.eclass-online.com). Nevertheless, the proliferation of prod-
uct standards leads to the severe interoperability problems be-
tween multiple product standards [6][8][20][23][28][29]. Integra-
tion of product standards becomes an important issue for many
researchers [3][7][8][24][25][30].

Concept-centric catalogue engineering approach for exchang-
ing ad hoc product data by context representation, transformation
and comparison has overcome the drawbacks of ontology and
standard approaches, and has given several contributions to the
research community. It enables ad hoc product data to be joined
into common product catalogues in a dynamic, evolvable and col-
laborative way [12][13]. It allows local catalogue designers to
maintain all the local information relevant only to its own seman-
tic community [14]. It makes it possible to connect to different ad
hoc product data stores for dynamic value generation [15]. What’s
more, it enables context comparison to find out the semantic simi-
larities between several product representations. This approach
has achieved product interoperability requirements of exactness,
evolvability and flexibility proposed in [13].

There is a limitation for this approach. Based on our current
research, this approach is more suitable for linking ad hoc product
data in SMEs where they only have tens of or several hundred of
product representations. More product representations may in-
volve higher labor costs. Therefore, how to enlarge the applica-
tion scope for this approach needs further research.

In summary, this paper has proposed a novel concept-centric
catalogue engineering approach for representing, transforming
and comparing contexts for ad hoc product data exchange. It ex-
plains how concepts are represented in both generic and heteroge-
neous forms and how concepts are organized to form the contexts
of product representations. This paper has also proposed a novel
XML product map (XPM) for representing contexts. Based on
XPM, a global product catalogue system has been developed,
which contains the common product catalogue (IEPC) and local
product catalogues (LEPC). Contexts from LEPCs can be trans-
formed between different semantic communities through the
IEPC. Incoming contexts from other semantic communities thus
can be compared. The processes of context representation, trans-
formation and comparison are enabled by a collection of context
operations such as query, insert, request and response. These op-
erations constitute the foundation of ad hoc product data exchange
between different semantic SMEs.

This paper is a research of concept-centric catalogue engineer-
ing approach. Several research issues are still urgent for explora-
tion. First, a more accurate protocol for XPM document exchange
is needed to optimize the parameters of various input/output op-
erations between different semantic communities. Second, the
replicated systems should be developed to allow collaboration
between IEPCs for the new concept development. Third, how to
integrate XPM with current product standards should be re-
searched for enlarging the application scope. These issues are in-
vitations to researchers for concept-centric catalogue engineering
approach.

9. ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful comments,
which were invaluable for improving the presentation of this work.

10. REFERENCES
[1] Barthes, R. Elements of Semiology. Hill and Wang, English

version 1967.
[2] Barthes, R. Mythologies. Hill and Wang, English version

1972.
[3] Bergamaschi, S., Guerra, F. and M. Vincini. A Data Integra-

tion Framework for e-Commerce Product Classification. In:

129

Horrocks and J. Hendler (Eds.): ISWC 2002, LNCS 2342,
Springer-Verlag Berlin Heidelberg 2002, 379-393.

[4] Chandler, D. Semiotics for Beginners. http://www.aber.ac.uk
/media/Documents/S4B/semiotic.html.

[5] Coombs, J.H., Renear, A. H. and S.J. DeRose. Markup Sys-
tems and the Future of Scholarly Text Processing. Communi-
cations of the ACM 30, 1987, 933-947.

[6] Dogac, A. and I. Cingil. A Survey and Comparison of Busi-
ness-to-Business E-Commerce Frameworks. ACM SIGEcom
Exchanges, Vol. 2.2, 2001, 16-27.

[7] Dogac, A., Tambag, Y., Pembecioglu, P., Pektas, S., Laleci,
G., Kurt, G., Toprak, S. and Y. Kabak. An ebXML Infra-
structure Implementation through UDDI Registries and Ro-
settaNet PIPs’. In: Proceedings of 2002 ACM SIGMOD In-
ternational Conference on Management of Data, Madison,
Wisconsin, USA, 2002, 512-523.

[8] Fensel, D., Ding, Y., Omelayenko, B., Schulten, E., Botquin,
G., Brown, M. and A. Flett. Product Data Integration in B2B
E-Commerce. IEEE Intelligent Systems 16(4), July/August
2001, 54-59.

[9] Glushko, R. and T. McGrath. Document Engineering for e-
Business. ACM DocEng’02, McLean, Virginia, USA, No-
vember 8-9, 2002, 42-48.

[10] Goh, C., Madnick, S. and Siegel, M. Context Interchange:
Overcoming the Challenges of Large-Scale Interoperable
Database Systems in a Dynamic Environment. ACM
CIKM’94, Gaitherburg, MD, 1994, 337-346.

[11] Guo, J. and C. Sun. Measurement Models for Survivability
and Competitiveness of Very Large E-Marketplace. In: Pro-
ceedings of Computational Science - ICCS 2003, LNCS 2658,
Springer-Verlag Berlin Heidelberg, 2003, 802-811.

[12] Guo, J. and C. Sun. Collaborative Product Representation for
Emergent Electronic Marketplace. In: Proceedings of 16th
Bled Electronic Commerce Conference: eTransformation,
Bled, Slovenia, June 9-11, 2003, 847-859.

[13] Guo, J. and C. Sun. Concept Exchange: Constructing Inter-
operable Electronic Product Catalogues in an Emergent En-
vironment’. In CEC’03: Proceedings of the IEEE Interna-
tional Conference on E-Commerce, IEEE Computer Society,
2003, 165-172.

[14] Guo, J. and C. Sun. Context Representation of Product Data.
ACM SIGEcom Exchanges, Vol. 4.1, 2003, 20-28.

[15] Guo, J. and C. Sun. Transforming Ad Hoc Product Data into
Canonical Local Product Representations. Submitted.

[16] ISO TC 37. http://www.iso.ch/iso/en/stdsdevelopment /tc
/tclist /TechnicalCommitteeDetailPage.Technical Commit-
teeDetail? COMMID=1459.

[17] Kashyap, V. and A. Sheth. Semantic and Schematic Similari-
ties between Database Objects: A Context-Based Approach.
The VLDB Journal 5, 1996, 276-304.

[18] Keller, A. and M. Genesereth. Multivendor Catalogs: Smart
Catalogs and Virtual Catalogs. EDI Forum: Journal of Elec-
tronic Commerce 9(3), 1996, 87-93.

[19] Linche, D. and B. Schmid. Mediating Electronic Product
Catalogs. Communications of the ACM 41(7), 1998, 86-88.

[20] Ng. W. K., Yan, G. and E. Lim. Heterogeneous Product De-
scription in Electronic Commerce. ACM SIGEcom Ex-
changes, Vol. 1.1, 2000, 7-13.

[21] Noga, M., Schott, S. and W. Löwe. Lazy XML Processing.
ACM DocEng’02, McLean, Virginia, November 8-9, 2002,
88-94.

[22] Omelayenko, B. RDFT: A Mapping Meta-Ontology for
Business Integration. In: Proceedings of the Workshop on
Knowledge Transformation for the Semantic Web (KTSW
2002) at the 15th European Conf. on Artificial Intelligence,
Lyon France, 23 July 2002, 76-83.

[23] Omelayenko, B. and D. Fensel. An Analysis of B2B Cata-
logue Integration Problems: Content and Document Integra-
tion. In: Proc. of Int’l Conf. on Enterprise Information Sys-
tems (ICEIS-2001), Setubal, Portugal, July 7-10, 2001.

[24] Omelayenko, B. and D. Fensel. A Two-Layered Integration
Approach for Product Information in B2B E-Commerce. In:
Proc. of the 2nd Int’l Conf. on Electronic Commerce and Web
Technologies, LNCS 2115, Munich, Germany, September 4-
6, 2001, 226-239.

[25] Omelayenko, B., Fensel, D. and C. Bussler. Mapping Tech-
nology for Enterprise Integration. In: Proc. of the 15th Int’l
FLAIRS Conf., Pensacola, FL., May 14-16, 2002, 419-424.

[26] Renear, A., Dubin, D., Sperberg-McQueen, C. M. and C.
Huitfeldt. Towards a Semantics for XML Markup. ACM Do-
cEng’02, McLean, Virginia USA, November 8-9, 2002, 119-
126.

[27] Robinson, M. and L. Bannon. Questioning Representations.
In Bannon, Robinson and Schmidt (eds) Proceddings of the
Second European Conference on CSCW, 1991, Dordrecht:
Kluwer: 219-233.

[28] Schulten, E., Akkermans, H., Guarino, N., Botquin, G.,
Lopes, N., Dörr, M. and N. Sadeh. Call for Participants: The
E-Commerce Product Classification Challenge. IEEE Intelli-
gent Systems 16(4), July/August 2001, 86-c3.

[29] Shim, S., Pendyala, V., Sundaram, M. and J. Gao. Business-
to-Business E-Commerce Frameworks, IEEE Computer
33(10), 2000, 40-47.

[30] Somers, H. (Ed). Terminology, LSP and Translation: Studies
in Language Engineering in Honour of Juan C. Sager. John
Benjamins Publishing Company, Amsterdam/Philadelphia,
1996.

[31] Stanoevska-Slabeva, K. and B. Schmid. Internet Electronic
Product Catalogs: an Approach beyond Simple Keywords
and Multimedia. Computer Networks 32, 2000, 701-715.

[32] Yen, B. and R. Kong. Personalization of Information Access
for Electronic Catalogs on the Web. Electronic Commerce
Research and Applications 1, 2002, 20-40.

130

