

 Int. J. Internet and Enterprise Management, Vol. 3, No. 2, 2005 117

 Copyright © 2005 Inderscience Enterprises Ltd.

Transforming ad hoc product data into canonical
product representation

Jingzhi Guo* and Chengzheng Sun
School of Computing and Information Technology
Griffith University, Nathan, QLD 4111, Australia
E-mail: J.Guo@cit.gu.edu.au jingzhiguo@yahoo.com
E-mail: C.Sun@cit.gu.edu.au
*Corresponding author

Abstract: Interoperation between business partners is extremely important.
However, most product data produced in many firms are considered as ad hoc
and are not qualified for interoperation. To solve this problem, this paper has
proposed a concept-centric definition transformation approach, which
transforms irregular local product definitions from different data sources to a
set of canonical local product representations. These canonical representations
are thus able to translate these common product representations to what the
public can understand, thus, achieving business interoperation between
different semantic communities.

Keywords: product interoperation; e-business; personalisation; ad hoc product
data; canonical product representation; context; integration; product standard.

Reference to this paper should be made as follows: Guo, J. and Sun, C. (2005)
‘Transforming ad hoc product data into canonical product representation’,
Int. J. Internet and Enterprise Management, Vol. 3, No. 2, pp.117–138.

Biographical notes: Jingzhi Guo is E-commerce Researcher. He received his
BEcon in International Business Management from University of International
Business and Economics (UIBE), China; MSc in Computation from University
of Manchester Institute of Science and Technology (UMIST), UK; and PhD
from Griffith University, Australia. His research interests are in the areas of
product data integration, business document integration, process reengineering,
supply chain management and global electronic markets. He has published
articles in journals and conference papers such as Electronic Markets,
ACM Symposium on Document Engineering and IEEE Conference on
E-Commerce Technology.

Chengzheng Sun is Professor for Internet Computing at Griffith University,
Australia, at the School of Computing and Information Technology. His
research focuses on the collaborative systems, internet computing, distributed
systems, parallel systems and logical programming. He is the inventor of
several web-based collaborative editing systems such as REDUCE. He has
published articles in journals and conference papers such as ACM Transactions
on Computer-Human Interaction, IEEE Transactions on Parallel and
Distributed Systems, IEEE Multimedia, IEEE Internet Computing and ACM
Conference on CSCW.

 118 J. Guo and C. Sun

1 Introduction

Product Data Integration (PDI) is an essential issue for business-to-business
interoperation (Fensel et al., 2001) in the areas of electronic product catalogue (Baron
et al., 2000; Ginsburg et al., 1999; Guo and Sun, 2003b; Handschuh et al., 1997; Keller
and Genesereth, 1996; Schulten et al., 2001; Segev et al., 1995; Stanoevska-Slabeva and
Schmid, 2000), supply chain management (Ball et al., 2000; Christiaanse and Kumar
2000; Kumar, 2001; Omelayenko et al., 2002; Welty and Becerra-Fernandez, 2001;
Wombacher et al., 2003), and semantic web services (Bergamaschi et al., 2002;
Berner-Lee et al., 2001; Omelayenko, 2002). It deals with how to extract product data
from rough sources that are heterogeneously represented in different ‘semantic
communities’ (Robinson and Bannon, 1991), and how to map them together for
semantics interoperation (Guo and Sun, 2003b). Central to this issue is how to capture the
inconsistent semantics of heterogeneous product data, and how to transform them into a
consistent semantic context model for semantics mapping (Guo and Sun, 2003c–d).

It is a challenge to present a consistent semantic context model to address product
data integration problems. Currently, there are many types of heterogeneous product data
representations located in different sources such as the types listed below:

Type 1 There are numerous heterogeneous de facto industrial product standards
such as xCBL (www.xcbl.org), cXML (www.cxml.org) and ebXML
(www.ebXML.org), which prevent business interoperations (Dogac and Cingil,
2001; Ng et al., 2000; Omelayenko and Fensel, 2001a; Shim et al., 2000).

Type 2 There are several heterogeneous international product classification
standards such as UNSPSC (www.unspsc.org) and eCl@ss
(www.eclass-online.com), which present different guidelines of classifying
products (Schulten et al., 2001).

Type 3 There are millions of ad hoc enterprise-wide product data representations. These
representations generally exist in the Small- and Medium-sized Enterprises
(SMEs) that are financially and technically difficult to link with existing product
standards because they may require too much reengineering work for PDI
(Guo and Sun, 2003c–d).

The above types of heterogeneous product representations are the major obstacles of
web-based business interoperation. There are considerable efforts toward integrating the
above heterogeneous product data. Current researches generally focus on the standard
integration of Types 1 and 2 (Bergamaschi et al., 2002; Dogac et al., 2002; Ng et al.,
2000; Omelayenko and Fensel, 2001b; Omelayenko et al., 2002; Omelayenko, 2002;
Schulten et al., 2001). Nevertheless, researches on how to integrate ad hoc product data
are not sufficient, except those that had been done by Guo and Sun (2003a–d). The
following case illustrates the issue of integrating ad hoc product data.

Consider that there are two SMEs, A and B, which have their own product
catalogues, Catalogue A and B. Catalogue A simply represents the product data on Web
page while Catalogue B represents it in relational tables. Assuming that both Catalogue A
and B contain a refrigerator specification as shown in Figure 1 and 2, the refrigerator data
of Catalogue A and B cannot interoperate with each other because Catalogue A and B
cannot understand each other due to the following facts:

 Transforming ad hoc product data into canonical product representation 119

• Catalogue A is not machine-readable.

• Even if Catalogue A is machine-readable, Catalogue B cannot understand Catalogue
A because their product attributes are differently defined. For example, Catalogue A
cannot assure that ‘silver’ is the colour of the refrigerator or ‘fab2az3’ is the
identifier of refrigerator.

• Catalogue A and B have very different attribute descriptions for both attributes and
attribute values.

These issues make Catalogue A and B semantically different for mutual understanding
and thus not interoperable.

Figure 1 Refrigerator Example 1

Figure 2 Refrigerator Example 2

These semantically different product catalogues of SMEs are ad hoc product data with
several important characteristics: inconstant, small-scale, irregular, heterogeneous and
numerous (Guo and Sun, 2003d). Inconsistent means the data source follows no standard
vocabulary, small-scale refers to the small number of products contained in a product
catalogue, irregular means that there are various types of product data sources such as
Web pages and relational tables, heterogeneous refers to different languages and
semantic encoding (e.g., English, French or Chinese), and numerous means millions of
product catalogues because there are millions of SMEs. These characteristics indicate that
the problem of semantic inconsistency is severe. Reflecting on devising the PDI
mechanism for global business-to-business interoperation between firms, three
specific problems are detected relating to the semantic context representation and
transformation. They are context extraction, context mediation and context comparison
(Guo and Sun, 2003c).

Solving these problems is essential to integrating ad hoc product data. The work of
Guo and Sun (2003c) has outlined an initial model, which articulates the context
representations in a framework of irregular local product definitions, canonical local

FAB2ÅZ3

Gross capacity: 271 litres
Tropicalised compressor
Adjustable thermostat
Energy efficiency class: A
Energy consumption: 288 Kw/h per year
Climatic class: T
Freezing capacity: 2kg/24h
Thaw time: 12h

Refrigerator
Fresh food capacity: 247 litres
Automatic defrost
3 adjustable glass shelves
1 fruit and vegetable container
1 covered storage box
1 chrome wine rack
silver

ID
5

Name
Refrigerator

Model
HTQ18JAAWW

Dimension
d255

Weight
w132

Description
frost free

Color
white

Width
29 5/8"

Depth
33 1/4"

Height
66 3/4"

ID
d255

ID
w132

Unit
lbs

Value
238

 120 J. Guo and C. Sun

product representations and public common product representations. A transformation
process is introduced to transform various irregular local product definitions, such as data
stored in different systems like XML files, relational tables and ad hoc web pages, into
canonical local product representations. After the canonical local product representations
are obtained, the consistent local semantic contexts are represented for mediation and
comparison. This enables local product data to be interoperable within an enterprise-wide
system. The public semantic contexts of ad hoc product data are achieved by mapping the
canonical local product representations into common public product representations.
When public semantic contexts are represented, different ad hoc product data located in
various SMEs are able to interoperate by comparing the public semantic contexts.

The semantic context representation model (Guo and Sun, 2003c) is logical, but this
model is a high-level framework that leaves several lower-level issues undiscussed. The
research of Guo and Sun (2003d) has solved some of these issues: how to represent
publicly understandable contexts, and how to transform and compare these contexts
for product data exchange between ad hoc product data. Nevertheless, two issues remain
unsolved, that is, how to model a process that will transform irregular local
product definitions into canonical local product representations and how to connect the
publicly understandable contexts by SMEs to industry-wide standards such as ebXML
and UNSPSC.

This paper aims to solve one of the above issues by proposing a novel concept-centric
definition transformation approach. This approach includes a LOCAL PRODUCT MAP
and a picker object that are used to transform irregular local product definitions to
canonical local product representations based on the product representation model (Guo
and Sun, 2003d). The approach follows the design guidelines discussed in Guo and Sun
(2003b). The issue of how to connect SMEs’ popular terminology to industry-wide
standards is beyond the scope of this paper, but we will give a brief discussion in
Section 5.

Section 2 proposes a novel LOCAL PRODUCT MAP to model local concept generation
processes. Section 3 discusses how the transformation process intends to capture ad hoc
product data from various data sources. In Section 4, we briefly discuss the
implementation by proposing a concept-centric catalogue architecture and a set of local
XML Product Map documents. Section 5 briefly discusses the issues of why we need
canonical product representation, what is the cost of concept mapping and how to
interoperate with the existing industrial standard ebXML. Section 6 concludes the paper
and outlines future works.

2 Local product map

We propose a novel LOCAL PRODUCT MAP in this section to model local concept
generation processes. The model discusses how to transform irregular local product
concepts into canonical local product concepts in Local Electronic Product Catalogue
(LEPC) in the form of a four-tuple (product identifier, product annotation, product
options, (attribute identifier, attribute annotation, attribute options, (attribute identifier,
attribute annotation, attribute options, (…)))). This canonical local product representation
(locRep) has the same structure as the common product concepts (comRep) situated in
common electronic product catalogues (CEPC). This is a revision based on the work of
Guo and Sun (2003d). We simply denote it as:

 Transforming ad hoc product data into canonical product representation 121

locRep := (IID, AN, OP, (IID, AN, OP, (…)))

where IID is the unique identifier of a concept (either a product or an attribute concept),
AN is concept annotation and OP is the optional item that details the concept
specification. Before we proceed to discuss the LOCAL PRODUCT MAP, we briefly
introduce the techniques that transform one locRep to another through comRep. In the
work of Guo and Sun (2003d), the interoperation between locRep and comRep is through
the mapping of locIID and comIID. For example, given a refrigerator specification that
are separately encoded in two LEPCs as LEPC1: (1.5, fridge, (1.5.1, prc)) and LEPC2:
(338, réfrigérateur, (338.1, prix)) and a CEPC as (1.52.14.15.1, domestic refrigerator,
(1.52.14.15.1.1, price)), by joining the operations discussed in Guo and Sun (2003d), two
LEPCs could be joined in CEPC to obtain the maps as follows:

1 Map(locRep1, comRep) := {(1.5 , 1.52.14.15.1), (1.5.1, 1.52.14.15.1.1)}

2 Map(locRep2, comRep) := {(338, 1.52.14.15.1), (338.1, 1.52.14.15.1.1)}.

When LEPCs have been joined in CEPC, LEPC1 can communicate with LEPC2 simply
by querying their locIIDs through CEPC. Since locIID and comIID are mapped in CEPC,
‘fridge’ can be understood as ‘réfrigérateur’ and ‘prc’ can be understood as ‘prix’. In this
sense, a semantic communication between two ad hoc SMEs is a process of checking
unique IID mapping between two adjacent catalogues.

2.1 Basic local product map

Nevertheless, how can we obtain the canonical form of (1.5, fridge, (1.5.1, prc)) or (338,
réfrigérateur, (338.1, prix)) from various SMEs to be mapped into comRep? The
following sections resolve this issue by proposing a novel LOCAL PRODUCT MAP.
Firstly, we introduce the term of normalised concept to understand the subtle
issues in modelling.

2.1.1 Normalised concepts and subtle issues

Let us take Example 1 – refrigerator that is irregularly defined in an SME as shown in
Figure 1. By analysing this irregular product definition against the locRep representation
model, the refrigerator concept can be decomposed into many concepts in different levels
such as:

• Product level: (refrigerator)

• Attribute Level 1: (capacity, feature, compressor, thermostat, energy efficiency class,
energy consumption, climate class)

• Attribute Level 2 (only for capacity): (fresh food, gross, freezing)

• Attribute Level 3 (only for freezing): (2, kg, 1, 24h)

• Attribute Level 4 (only for 24h): (24, h).

 122 J. Guo and C. Sun

Obviously, each concept in each level is irregular. To make these concepts regular and
canonical for interoperation, we normalise all decomposed concepts into ‘normalised
concepts’ in the locRep form of (identifier, annotation, link) as follows:

• Level 1: Conceptrefrigerator := (fab2az3, refrigerator)

• Level 2: Conceptcapacity := (fab2az3.1, capacity)

• Level 3: Conceptfreezing := (fab2az3.1.3, freezing)

• Level 4: Concept<24h> := (fab2az3.1.3.3, 24h)

• Level 5: Concept<h> := (fab2az3.1.3.3.2, h)

For the convenience of analysis, we define a normalised concept as a denotative concept
of locRep in the form of (IID, annotation, options (link, structure, …)) that satisfies XPM
Rule 2 presented in Guo and Sun (2003d), where each structure points to a set of lower
level denotative concepts. Following this definition, we analyse the above irregular
refrigerator example and find several subtle issues. First, some attribute concepts are
ambiguous and implicit (c.f., they are similar to the semantic issues discussed in
interoperable databases (Goh et al., 1994; 1999; Kashyap and Sheth, 1996)), that is, no
enterprise-wide annotations are given to define these implicit concepts. For example,
under ACfreezing, irregular concepts of ‘2, kg, 1, 24h’ are not qualified as normalised
concepts because these are not clear and may not be understood by others if we simply
represent them in locRep. Second, to solve the first issue, we may use understandable
annotations (meta concepts) such as ‘scalar value, scalar name, unit, unit name’ to replace
‘2, kg, 1, 24h’. Nevertheless, if we make such replacement, from where should these
metaconcepts come? Where and how should these specific data be stored to reflect the
precise irregular local product definitions? Third, if we compare this analysis against
Example 2 in Figure 2, we further find more issues. There are many heterogeneous
annotations or product identifiers which are denoted differently between two examples.
Fourth, the number of levels of decomposition may be different for different local
product definitions. Fifth, the number and semantics of different local concepts on the
same level under the same parent concept may be different in three cases: identical in
both number and semantics, identical for a few numbers in semantics, and disjoint for
all numbers.

These subtle issues can be classified into three categories:

1 Issues for generating enterprise-wide generic terms that define concepts in the form
of locRep, where data are separated from these generic terms. This is analogous to
creating local metaconcepts for locRep.

2 Issues that allow heterogeneous terms for different data sources, semantically the
same but expressed differently, to be communicated between heterogeneous
legacy systems.

3 Issues to include particular product data that are only instances of concepts. These
instances should not change the semantics of local metaconcepts.

 Transforming ad hoc product data into canonical product representation 123

2.1.2 Modelling basic local product map

We propose a novel basic LOCAL PRODUCT MAP in this subsection to solve Category 1
issue by forcing local product catalogue designers to provide the consistent normalised
concepts in the form of identifier, annotation, options to generate normalised locRep
concepts that are able to communicate with comRep.

We start the proposal from the normalisation analysis, which is a process of checking
whether the irregular concepts from product definitions are consistent with locRep model,
how many levels are involved, how many attributes are in each level that belong to the
parent attributes or products, and how much new information should be added to create a
consistent normalised concept. To facilitate the checking process, the LOCAL PRODUCT
MAP models the relations between the fields of a concept so that we could prevent
ambiguous and implicit instance data that affect the understanding within a firm and
could generate local metaconcept correctly. The modelling process is:

First, generating a local metaconcept by defining a concept’s denotation and
connotation (Guo and Sun, 2003d): denotative concept defines a local metaconcept’s
uniqueness, scope and spatial information such as identifier, annotation and link.
Connotative concept defines a local metaconcept’s lower level concept structure
consisting of a set of attribute concepts. For example, inside the brackets of Level 1
concept of Example 1 is the denotation, while all identified Level 2 concepts are
connotations of Level 1 concept.

Second, setting a rule that a new local metaconcept can only be created by the first
local product catalogue designer who generates the concept. We call this rule as FISE
– ‘first insert, second edit’. This rule is based on the assumption that enterprise-wide
catalogue designers have the full knowledge and privilege of creating a correct local
metaconcept. Designers who come later could only edit an existing concept by either
appending apposition concepts (i.e., semantically same but may be expressed differently)
with the same concept identifier IID or change the concept structure by including more
child-level concepts. This rule guarantees that the existing referenced concepts and
instantiated concepts are not affected.

A basic LOCAL PRODUCT MAP devised in Figure 3 provides a structure of a
metaconcept model, which guarantees that a local metaconcept is generated correctly
according to locRep model. This model provides a canonical analysis, input and
processing framework for LEPC designers to create the expected local metaconcepts to
form locRep. Relations in the model are concept-centric. They force all normalised
concepts to be transformed into locRep concepts in a rigid way.

First, a concept has a type, which is either a product type or an attribute type. A
product type means a concept is defined on a product catalogue tree as a product node.
An attribute type means a concept is defined as an attribute node on a product tree.

Second, a concept is assigned a unique local internal identifier when it is being
generated. A concept’s internal identifier locIID consists of two parts: local product
identifier locPID and a local attribute concept identifier locAID. A locPID is the legacy
product identifier such as ‘fab2az3’. A locAID is defined as a vector concept on a vector
tree (Ai

1, …, Ai
k) (for the details of vector concept, please refer to Guo and Sun (2003d)).

A locIID can be take the following form:

LocIID: = locPID × locAID: = locPID × 1.i…i

 124 J. Guo and C. Sun

where i is the i in (Ai
1, …, Ai

k) of a vector tree. For simplicity, a locIID is represented as
locIID<k, i> where k is the tree level and i is the position of sibling.

Third, a generated locIID is only validated after the concept is denoted by an
annotation otherwise it is illegal and void. In this case, a concept is strictly dependent on
an annotation following FISE rule.

Fourth, a concept may be denoted by many annotations in different scopes, each of
which belongs to exactly a concept scope. This defines many concept scopes for the same
concept. However, though annotations may have different scopes, they should be
semantically equivalent with the annotation following FISE rule. For example,
‘refrigerator’ and ‘réfrigérateur’ belong to different language scopes, but they are
semantically equivalent. In addition, each scope concept should only have one annotation
as enterprise-wide reference.

Fifth, a concept is connoted by one-to-many structures, where each conveys a set of
child concepts. Connotation is a process of appending child concepts. If a concept has no
connotation, it is called a leaf concept.

Figure 3 Concept-centric basic product map

2.1.3 Local metaconcept generation process

To describe how systems precisely regulate the generation of local metaconcepts that
create or evolve a local product catalogue in conformity with the basic LOCAL PRODUCT
MAP, we provide a generic procedure to govern the generation process.

Local metaconcept generation procedure: when an irregular local product definition
has been decomposed into a set of normalised concepts and is ready to be part of locRep,
the following steps are executed:

Concept

Annotation

Scope

1..*

1..*

<<isIn>>

Structure
<<Connotes>>

0..*

1..*

Type

<<Has>> 1..1

Concept identifier
<<Identifies>>

1..1

Line optionally ending in line
arrowhead: named relationship
Line ending in black diamond:
strict dependency

Line ending in open diamond: a
set

Legend

Definition
Type = {product, attribute}

1..1

 Transforming ad hoc product data into canonical product representation 125

1 Browse

Operations on LEPC (note: the initial LEPC contains only a catalogue root)
determine concept locIID by finding the insert position of a new concept.

2 Retrieve

Operations on LEPC retrieve the IID-ed concept information to designer’s user
interface, i.e., concept editor. If the locIID corresponding to the browsed annotation
associates a type of product, then the retrieved local metaconcept is a locPID from a
catalogue tree. If the locIID corresponding to the browsed annotation associates a
type of attribute, then the retrieved local metaconcept is locPID*locAID from a
product tree.

3 Insert

Operations insert the new local metaconcept into LEPC according to the retrieved
locIID. The possible concept insert positions are:

• product sibling or product child if the retrieved concept is locPID

• attribute sibling or attribute child if the retrieved concept is locAID.

This procedure describes the overall governing regulations of how a basic LOCAL
PRODUCT MAP could correctly generate enterprise-wide metaconcepts as a set of
enterprise-wide reference metaconcepts for constructing a canonical LEPC against a set
of normalised concepts input from the designers.

2.2 Extended local product map

Two issues about how to accept heterogeneous terms and how to include particular
product data are not discussed in basic LOCAL PRODUCT MAP. These two issues are
important in integrating heterogeneous ad hoc product data and integrating dynamic
product data exchange. This subsection aims to solve these two problems.

2.2.1 Allowing heterogeneous concept expressions

In multidatabases, semantic conflicts arising from records are often resolved through
comparing contexts against marketplace ontologies (Goh et al., 1994; 1999; Kashyap and
Sheth, 1996). In this paper, we follow concept exchange approach by comparing a set of
concepts (Guo and Sun, 2003b) composed in different departments to determine whether
ad hoc product definitions that are heterogeneously expressed are semantically the same.
Since marketplace product ontologies are generally not available to most ad hoc product
data, these product data are often generated following no public rules/standards but only
the preferences of LEPC designers in their local semantic communities (Guo and
Sun, 2003c).

 126 J. Guo and C. Sun

The need and possibility for including heterogeneous concept expressions vary in
different firms:

• Ad hoc product data have their own characteristics even between departments
of a firm.

• Maintaining ad hoc data is necessary because many firms have already designed
their business processes based on the ad hoc product definitions. Changing product
definitions means changing the existing business processes, which is not desirable.

• Ad hoc product data are often generated in SMEs or their respective departments
where each has a small number of ad hoc product definitions – from several to tens
of products.

These make it necessary and possible for firms (at least for SMEs) to manually map the
heterogeneously expressed concepts onto a set of enterprise-wide metaconcepts by
browsing an enterprise-wide reference LEPC.

Our specific approach for permitting heterogeneously expressed concepts is to apply
scope reference concept and scope apposition concepts. Scope reference concepts are a
set of language different from but semantically the same as metaconcepts that share the
same locIID. Scope appositional concepts are a set of heterogeneously expressed
concepts that are semantically different from the language of the same metaconcepts that
share the same locIID. The modelling relationships are shown in Figure 4.

Figure 4 Appositional concept

Appositional
concept

Concept internal
identifier

Scope

<<Create>>

Reference
concept

Annotation
<<Determine>>

The key of scope reference concepts and scope apposition concepts is the shared locIID,
which is generated by one of the semantically the same annotations following the FISE
rule. All concept information except locIID can be overridden according to the new
concept expression requirements. This overriding follows the creation sequence of ‘first
scope reference concept other scope reference concept scope apposition concepts’.

For example, if a French department has defined a first reference concept (33568,
réfrigérateur) and set the scope in French, the second English designer should only first
browse ‘réfrigérateur’ in LEPC to continue designing ‘refrigerator’. He/she should
maintain the same locIID 33568 to create a new ‘English’ scope reference concept, such
as (33568, fab2az3, refrigerator) where 33568 and fab2az3 are mapped. For further
designing a scope apposition concept in ‘English’ scope, a designer can override the
English scope reference concept such as (fab2az3, SFH335, freezer) on the condition that
the catalogue designer can make sure that ‘freezer’ and ‘refrigerator’ are semantically
the same.

 Transforming ad hoc product data into canonical product representation 127

This solution has solved the conflicting semantic problems by permitting
heterogeneous local metaconcepts, except that two requirements should be met. First, a
designer should understand at least one of the created scope reference catalogues.
Nevertheless, a language translation tool could be devised to relieve this requirement.
Second, a designer should be able to judge semantic equivalence between his/her
concepts and the referenced concepts. Bias may occur and this may be the cost of
globalisation. A good concept-mapping guideline and/or some verification mechanisms
can decrease such possibility.

2.2.2 Including dynamic instance data

The ultimate purpose of transforming irregular local product definitions is to allow
particular product data to be retrieved by remote users in the data supply chain of ‘local
irregular product definitions→locRep→comRep→locRep→local irregular product
definitions’. Therefore, it is important to study how to supply the dynamic particular
product data attached on the irregular local product definitions. We call such data as
instance product data.

In this subsection, we propose a ‘data-on-leaf’ model to describe the dynamic
instances of ad hoc product definitions as shown in Figure 5.

Figure 5 ‘Data-on-leaf’ model

‘Data-on-leaf’ means that all instance data of a product representation are located on
the top of the leaves of a set of metaconcepts. That is, if a product’s locIID < m,
n > = locPID*(A1

1, Ai
2, …, An

m), then all locAID with level < m do not connect to
instance data. That is, locAIDlevel< m are excluded, where m is the largest level number for
each concept path (e.g., ‘6’ is the largest level number for locAID = [1, 3, 26, 43, 2, 5]).

Figure 6 intuitively explains the model, where each leaf concept positioned by a
locAID connects to a piece of instantiated product data through an apposition concept.
The connections are one-to-many relationship between leaf metaconcept and apposition
concept, one-to-one relationship between apposition concept and instance concept and
one-to-one relationship between instance concept and dynamic value (particular data).

Leaf concept Instance data

 128 J. Guo and C. Sun

Figure 6 Concept instantiation

There are two functions of the data-on-leaf model. First, it allows the instantiation of a
leaf concept to carry a set of dynamic values. Second, it prevents concept semantic
conflicts while it allows instantiation. The first function is achieved by dynamically
connecting to data sources (see Section 3). The second function is achieved by the
following rule.

Instantiation rule: any concept in a product tree can be instantiated only if the concept
is a leaf concept that is atomic and cannot be broken down into smaller concepts.

This rule indicates that an instantiation will always be in danger of semantic conflicts
if a concept, which is being instantiated, is not atomic or an implicit concept that implies
lower-level concepts. For example, a ‘refrigerator’ has a product tree (like
colour, dimension [width, length, height]). If designer A instantiates ‘dimension’ as
‘29 × 33 × 66’, and designer B instantiates ‘dimension’ as ‘29, 33, 66’, it is clear that
these two instantiations produce semantic conflicts. The instantiation rule forces that if
designer A insists on instantiating ‘dimension’ in his/her own way, s/he should generate a
new child concept of ‘dimension’ such as ‘three dimension’ to match his/her desired
format and make a mapping such that Map (threeDimension, dimension [width, length,
height]). However, as a general practice, it is important to follow the existing formats if
the leaf concepts have already included the needed expressions. One of our concerns in
following the general practice is the proliferation of the concepts in a product tree.
Eliminating semantic conflicts is the target of ad hoc product data integration, but
decreasing the redundant concept number in LEPC is also desirable though the
redundancy cannot be prevented from technical designs. This is caused by the designers’
preferences and cognition and can be minimised by adopting good business practices.

3 Handling heterogeneous data sources

In the previous sections, we have focused on the process of how local metaconcepts are
generated, expressed and dynamically instantiated. To finish the whole definition of the
transformation process from irregular product definitions to locRep, the remaining issue
is how to retrieve ad hoc product definitions in heterogeneous data stores.

There are a large number of references for retrieving data from heterogeneous data
sources such as (Ball et al., 2000; Domenig and Dittrich, 2000; Lee et al., 2002).
However, since these approaches generally apply to their own problem domains, they are
difficult to be directly utilised in our context. In this case, this section has devised a
Picker object to capture ad hoc data sources.

Leaf meta-concept Apposition concept1..*
<<Reifies>>

Dynamic value 1..1<<link>> Instance concept

1..1 <<Instantiate>>

 Transforming ad hoc product data into canonical product representation 129

The general idea of Picker (see Appendix 1 of Appendices) is that when a query
request arrives in LEPC, the LEPC detects all product data sources (e.g., XML files and
relational databases) within its control domain and selects the needed processors. The
Picker transforms the query request into the queries understandable by those product
sources. The specific methods are:

• For XML sources, the local concept identifiers locIID of local metaconcepts maps
onto XPath expression (Clark and DeRose, 1999) such that
Map(LocalConcept(locIID), SourceConcept(XPath)).

• For relational databases, the local concept identifiers locIID of local metaconcepts
maps onto path expression that is proposed in the research work of LOREL (Quass
et al., 1995) and TSIMMIS (Garcia-Molina et al., 1997) such that
Map(localConcept(locIID), SourceConcept(Path)).

By mapping local concept identifier onto path expression that can query source product
data, the query semantics are exactly passed from LEPC to source product catalogues and
the dynamic values of path expressions are transferred to the leaf metaconcepts as the
instance data.

The underlying design strategy is that the systems of source product catalogues do
not provide specific functionalities of how to retrieve ad hoc data. Picker object
(see Appendix 1) selects the data processors such as xsltProcessor and
databaseProcessor defined by the designers. It is the responsibility of designers to
provide data retrieval codes. The selected data processors specified by designers process
these code fragments to retrieve ad hoc data and convert them into normalised instance
concepts. This strategy has two important benefits. First, it enables the underlying
systems to adapt to millions of heterogeneous product data sources. Product standards are
not required for local firms/departments. In contrast, local firms/departments can
continue to use their legacy data systems for their ongoing business. Second, it makes the
system design simpler, more cost effective, and more applicable in a wider range. The
design of specific computational rules for processing input data (‘inData’ in Picker
object) is another separate important research. This paper will not make further
discussion as it is worthy of another research article.

4 Implementation discussion

There are two issues concerning the implementation of the concept-centric definition
transformation approach. First, what architecture should be selected. Second, what kind
of language should be used to implement the LOCAL PRODUCT MAP. In this section, we
propose a concept-centric LEPC architecture and develop a set of new XML PRODUCT
MAP (XPM) documents that are consistent with the basic XPM rules stipulated in Guo
and Sun (2003d) to illustrate our implementation.

 130 J. Guo and C. Sun

4.1 Concept-centric LEPC architecture

A generic and geographically dispersed enterprise shows that its organisation is generally
in the form of headquarters, regional divisions and their lower-level departments. This
organisational form in ad hoc electronic product data shows that different regions may
use different languages for product data formats, different departments may have
different dialects to define products, and different departments may have different data
stores. Following this observation, we propose a concept-centric LEPC architecture to
collect heterogeneous product data and divide different types of concepts into several
architectural components: Regional Reference Catalogues (RRCs) for regional divisions,
Local Apposition Catalogues (LACs) for departments and Local Data Stores (LDSs) for
maintaining various relational databases and XML data stores. Amongst these
components, RRCs are partially replicated in different regions. LACs externally connect
to RRCs and internally connect to one or more LDSs. All components are connected
through intranet. The aim of this architecture is to build an enterprise-wise local product
concept standard that could be structurally consistent with common product concepts as
discussed in Guo and Sun (2003d), and enables LEPC designers to further participate in
the global common product catalogue discussed in Guo and Sun (2003b–c).

4.2 XML product map documents

An enterprise-wide LEPC is a set of electronic documents (Glushko and McGraith,
2002). The key to the implementation of the LOCAL PRODUCT MAP and the picker
object lies on how documents are designed. In this section, we define two kinds of XPM
documents respectively for RRCs and LACs.

4.2.1 RRC documents

An RRC document is a set of hierarchically arranged denotation concepts where the set
of child denotation concepts is the connotation concepts of the parent concept. Each
denotation concept includes a locIID and an annotation. Other items are optional.
Mapped onto an XML document, its XML DTD for product map is:

<!ELEMENT concept (concept*)>

<!ATTLIST concept locIID NMTOKEN #REQUIRED

 locAnnotation CDATA #REQUIRED

 locOptioni CDATA #IMPLIED>

Physically, RRC XPM documents can be categorised into two types of metaconcept
documents: local catalogue documents (locCat.xml) and local product documents
(locProd.xml). A locCat.xml is a language-scoped catalogue that includes many
locProd.xml. A set of RRC documents constitutes a regional LEPC system that connects
with other regional LEPCs by replicating the shared locIIDs.

 Transforming ad hoc product data into canonical product representation 131

4.2.2 LAC documents

An LAC document is instantiated from RRC documents and contains the information of
both RRC and LDS. It reserves the departmental personalised data by inserting
apposition concepts. Its XML DTD can be expressed in the following:

<!ELEMENT appositions (concept*)>

<!ELEMENT concept (#PCDATA)> <!--The instance concept either from
manually inputted ad hoc data or from #PCDATA for ‘code fragment’ to
manipulate dynamic value stored in the heterogeneous data stores.-->

<!ATTLIST concept locIID NMTOKEN #REQUIRED

 appoAnnotation CDATA #REQUIRED

 appoOptioni CDATA #IMPLIED

 dataType NMTOKEN #REQUIRED>

A particular LAC document is an XPM apposition document (locAppoProd.xml) that
combines a set of local metaconcepts, a set of apposition concepts and a set of
corresponding local instance concepts. This document describes a set of particular
product definitions that reflect the departmental personalisation and the dynamic values
mapped onto the enterprise-wide metaconcepts.

In our current implementation, we have designed a visual concept browser, a visual
concept editor and a picker control in Microsoft .NET to bring the three types of concepts
together in a locAppoProd.xml document, as shown in Figure 7. The implementation is a
part of the global IEPC (interoperable electronic product catalogues) systems (Guo and
Sun, 2003b) and includes the following components:

• LEPC browser: a visual control for browsing RRC documents.

• LEPC editor: a visual control that displays the metaconcept browsed from RRC
documents and provides editing functionalities to build LAC documents.

• Concept picker: a control for manipulating the ‘code fragment’ provided by the
catalogue designer to edit particular data in different data stores.

Our current implementation experience indicates that the concept-centric ad hoc product
data integration is conceptually correct and applicable especially for SMEs or
departments that have few products for global integration.

 132 J. Guo and C. Sun

Figure 7 Implementation of locAppoProd.xml

5 An extended discussion

This section provides an extended discussion on three general questions that most
researchers ask: whether a firm requires a canonical product catalogue to connect to
source product catalogues, whether the cost of the concept mapping process is acceptable,
and whether LEPC systems can interoperate with popular international product standards
or de facto industrial standards.

5.1 Why canonical LEPC?

The answer to why a firm needs a canonical LEPC lies in the fact that each firm is a
semantic community (Robinson and Bannon, 1991) that has semantic conflicts with
others, and there are millions of firms where each may have multiple product data
sources. Without a canonical LEPC that can interoperate with Common Electronic
Product Catalogues (CEPCs), every data source must maintain a concept-mapping
mechanism with CEPCs. The reengineering cost will be huge and the technical
requirement will be higher than the cost of maintaining a canonical LEPC. With
canonical LEPC that is distributed by CEPC service providers, local firms can easily map
source concepts of product data sources onto LEPC concepts that are automatically
transformable into CEPCs for remote concept exchange. A comparison between two
approaches can be illustrated in the following.

Given that the cost of designing and implementing a canonical LEPC system is M
dollars, if there are one million firms to participate in CEPCs and each firm has one
product data source, then if the canonical LEPC is produced by CEPC service provider
and distributed to firms (as users), then each firm only requires ‘1/1million M dollars as
X + a certain amount of service charges as Y + editing fees for connecting to data source

Regional catalogues

locIID
(metaconcept)

Apposition
concept

Instance
concept

lo
cA

pp
oP

r
od

.x
m

l

Relational
database XML data Ad hoc data

Concept
browser

Concept
editor

Concept
picker

 Transforming ad hoc product data into canonical product representation 133

as Z’ to have their heterogeneous product data interoperable. However, if each firm
directly produces mapping mechanisms between CEPC and product data source, each
firm requires M dollars. So the comparison has the following:

Result = M – (X + Y + Z).

Obvious, only if the cost of (Y + Z) of a firm tends to be [(1 million – 1)/1 million] × M,
then M = X + Y + Z. As we have known, according to the theory of labour division
(Smith, 1976) and comparative advantage (Ricardo, 1912), the use of CEPC service
provider for canonical LEPC is more profitable than an individual firm producing
a mapping mechanism by itself. Therefore, (Y + Z), in general, will not reach to
[(1 million – 1)/1 million] × M unless a firm has the mapping scale (i.e., need to map a
million of data sources or the mapping quantity equals to total quantity of all the
customers of the CEPC provider) equal to a CEPC service provider. If such case happens,
that firm is suitable for a CEPC service provider to internally provide services and work
in collaboration and cooperation with other CEPCs.

5.2 Cost analysis of concept mapping

Given that a firm accepts the argument that the cost of (X + Y + Z) will always be less
than M, another question is whether there is another method that costs less than N,
enabling N – (X + Y + Z) < 0. Two possible methods are:

1 international standard adoption such as linking to UNSPSC (www.unspsc.org),
ecl@ss (www.eclass.de) and HL7 (www.hl7.org)

2 abandon electronic markets and use traditional internationalisation method to
participate in global markets.

For some SMEs, the second approach is possible if it has strong global market
connections and their products comparatively rely on several known companies. This
method is beyond the discussion of this paper.

For the first approach, it is a standard adoption issue (Steinfield et al., 2004).
However, adopting existing standards is limited to several aspects (Guo and Sun, 2003a):

• purchasing standard systems that require a considerable amount of money

• reengineering the existing product data source systems that may affect the use of
legacy systems

• may retard the process of adapting to the emergent changes of the firm’s
requirements to insert, delete and modify new data that are beyond the
adopted standards

• a certain standard can only cover a limited marketplace.

It is unnecessary to argue whether the standard adoption approach is better or worse than
introducing canonical LEPC to interoperate with other firms through CEPCs. The key in
judging whether a firm needs to adopt a standard approach is to observe the cost of
installing standard systems, the maintenance cost and the benefit from the market
coverage of the standard. Therefore, there is no absolute comparison to determine which
approach is better. The comparison issue should be left to the judgement of decision
makers of individual firms after obtaining the result of ‘N – (X + Y + Z)’.

 134 J. Guo and C. Sun

5.3 Interoperability with popular standards

Given that a firm adopts the canonical LEPC to participate in the global electronic
markets, another question is how a firm can interoperate with international standards or
de facto industrial standards to enlarge market coverage. To answer this question, this
subsection discusses the issue by illustrating how a ‘fridge’ of one firm can be understood
by ‘réfrigérateur’ of another firm through the industrial standard ebXML.

To simplify the discussion, we first present an ebXML purchase order that is encoded
in SOAP format, as shown in Appendix 2 (Figure 9). The product ‘refrigerator’ being
purchased is encoded in the XPM format, which links both LEPC and CEPC.

Since ebXML is an open interoperation infrastructure, it provides customers with
service registry that links to repositories. The aim of ebXML is not to specify product and
service descriptions specifically situated in numerous firms, but to allow them to be
discovered through ebXML by combining other standards such as SOAP (Box et al.,
2000) and WSDL (Christensen et al., 2001). Therefore, we should note that the issue of
how to make ad hoc product representations interoperable with each other is separate
and independent.

Nevertheless, ad hoc concepts encoded in XPM can be embedded in ebXML for
business interoperation as shown in Appendix 2 (Figure 9) of the Appendix. In fact, one
of the targets of XPM is to utilise existing industrial standards such as ebXML and
UNSPSC (www.unspsc.org). For example, the base concept IIDs of CEPC have been
adopted by the UNSPSC classification, such as ‘1.52.14.15.1’ is mapped onto
‘52141501’ for ‘domestic refrigerator’.

The embedded heterogeneous product concepts can be exactly exchanged as
illustrated in Figure 8. When the firm A sends ‘fridge’ to firm B, it actually sends the
locIID to firm B. When firm B receives the product information, it translates the
unknown locIID into its own locIID against the comIID mapped in CEPC. Since locIID
is determined by local annotation ‘réfrigérateur’, firm B can then understand ‘fridge’.

The XPM documents devised in this paper have provided canonical local product
representations that could be mapped onto common CEPC concepts. When plugging the
LEPC/CEPC mapping mechanism into a local concept editor as shown in Figure 8, the
LEPC/CEPC mapping process will be automatically achieved. The mapped product
concepts can then be embedded in different kinds of business documents for free
business interoperation.

Figure 8 Heterogeneous concept exchange between two firms

ebXML
Services

CEPC
Services

 Fridge(prc(curr, amt))
<concept iid="xxx">
 <concept iid="xxx-1" instance="USD"/>
 <concept iid="xxx-2" instance="500"/>
</concept>

 Refrigerateur(prix(devise,valeur))
<concept iid="yyy" >
 <concept iid="yyy-1" instance="USD"/>
 <concept iid="yyy-2" instance="500"/>
</concept>

Refrigerator(Price(currency, amount))
<map>
 <concept iid="1.52.14.15.1"/>
 <concept iid="xxx"/>
</map>
......

<map>
 <concept iid="1.52.14.15.1"/>
 <concept iid="yyy"/>
</map>
......

 Transforming ad hoc product data into canonical product representation 135

6 Conclusion

In this paper, we have proposed a concept-centric definition transformation approach to
transform ad hoc local product definitions to canonical local product representations.
Central to this approach is the proposed novel model called LOCAL PRODUCT MAP for
generating local metaconcepts, apposition concepts and instance concepts for canonical
local product representations. This model has analysed concept generation process and
solved the problems of semantic conflict between local concepts.

To obtain the normalised concepts correctly, we have suggested a dynamic ad hoc
product data-retrieval strategy that allows all ad hoc product data to be manually inputted
or retrieved against a set of code fragments supplied by designers. This strategy has
protected the legacy product data stored in both XML files and relational databases. In
this case, different semantic communities are able to maintain their own data preferences
that are expressed in different languages, customs and business practices.

The local product map is implemented on a set of XPM documents, which in turn are
built on the proposed concept-centric LEPC architecture. The local product concepts
implemented in XPM documents can be semantically interoperable between various
heterogeneous systems through CEPCs or through ebXML by embedding XPM
documents in ebXML documents.

A major contribution of this paper is the novel definition transformation approach for
the semantic integration of heterogeneous ad hoc product data distributed in different
data stores. This allows us to form a set of canonical local product representations that are
able to communicate with a set of publicly understandable common product
representations (Guo and Sun, 2003c–d). A current constraint of the implementation is
that the approach is more suitable for SMEs or small geographical departments that have
fewer products and can afford only a small amount of reengineering work to join the
global electronic marketplace.

A future direction of this paper is to build retrieval rules for the instance concepts so
that only permitted product data instances are presented when remote queries come. This
includes a study on how to build XPM rules that could be embedded in LEPC.

Acknowledgements

We thank the anonymous reviewers for their insightful comments, which were invaluable
for improving the presentation of this paper. We also thank the editors for their great
work to include this paper in the issue.

References

Ball, M., Ma, M., Raschid, L. and Zhao, Z. (2000) ‘Supply chain infrastructures: system integration
and information sharing’, ACM SIGMOD, Vol. 31, No. 1, pp.61–66.

Baron, J., Shaw, M. and Bailey, A. (2000) ‘Web-based e-catalog systems in B2B procurement’,
Communication of the ACM, Vol. 43, No. 5, pp.93–100.

Bergamaschi, S., Guerra, F. and Vincini, M. (2002) ‘A data integration framework for e-commerce
product classification’, in I. Horroscks and J. Hendler (Eds.) ISWC 2002, LNCS 2342,
pp.379–393.

 136 J. Guo and C. Sun

Berner-Lee, T., Hendler, J. and Lassila, O. (2001) ‘The semantic web’, Scientific American, May
Issue.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H., Thatte, S. and
Winer, D. (2000) Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP/

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. (2001) Web Services Description
Language (WSDL), http://www.w3.org/TR/wsdl

Christiaanse, E. and Kumar, K. (2000) ‘ICT enabled coordination of dynamic supply web’,
International Journal of Physical Distribution and Logistics Management, Vol. 30, Nos. 3–4,
pp.268–285.

Clark, J. and DeRose, S. (1999) ‘XML Path Language (XPath) Version 1.0’, W3C
Recommendation, 16 November, http://www.w3.org/TR/xpath

Dogac, A. and Cingil, I. (2001) ‘A survey and comparison of business-to-business e-commerce
frameworks’, ACM SIGecom Exchanges, Vol. 2, No. 2, pp.16–27.

Dogac, A., Tambag, Y., Pembecioglu, P., Pektas, S., Laleci, G., Kurt, G., Toprak, S. and Kabak, Y.
(2002) ‘An ebXML infrastructure implementation through UDDI registries and RosettaNet
PIPs’, Proceedings of 2002 ACM SIGMOD International Conference on Management of
Data, Madison, Wisconsin, USA, pp.512–523.

Domenig, R. and Dittrich, K. (2000) ‘A query based approach for integrating heterogeneous data
sources’, Proceedings of ACM CIKM 2000, McLean, VA, USA.

Fensel, D., Ding, Y., Omelayenko, B., Schulten, E., Botquin, G., Brown, M. and Flett, A. (2001)
‘Product data integration in B2B e-commerce’, IEEE Intelligent Systems, Vol. 16, No. 4,
pp.54–59.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.,
Vassalos, V. and Widom, J. (1997) ‘The TSIMMIS approach to mediation: data models and
language’, Journal of Intelligent Information Systems, Vol. 8, No. 2, pp.117–132.

Ginsburg, M., Gebauer, J. and Segev, A. (1999), ‘Multi-vendor electronic catalogs to support
procurement: current practice and future directions’, Proceedings of 12th International Bled
Electronic Commerce Conference, Bled, Slovenia.

Glushko, R. and McGraith, T. (2002) ‘Document engineering for e-business’, Proceedings of ACM
DocEng’02, McLean, Virginia, USA, pp.42–48.

Goh, C., Bressan, S., Madnick, S. and Siegel, M. (1999) ‘Context interchange: new features and
formalisms for the intelligent integration of information’, ACM Transactions on Information
Systems, Vol. 17, No. 3, pp.270–293.

Goh, C., Madnick, S. and Siegel, M. (1994) ‘Context interchange: overcoming the challenges of
large-scale interoperable database systems in a dynamic environment’, Proceedings of ACM
CIKM’ 94, Gaitherburg, MD, USA, pp.337–346.

Guo, J. and Sun, C. (2003a) ‘Collaborative product representation for emergent electronic
marketplace’, Proceedings of 16th Bled Electronic Commerce Conference, Bled, Slovenia,
pp.847–859.

Guo, J. and Sun, C. (2003b) ‘Concept exchange: constructing interoperable electronic product
catalogues in an emergent environment’, Proceedings of IEEE International Conference of
E-Commerce, IEEE Computer Society, pp.165–172.

Guo, J. and Sun, C. (2003c) ‘Context representation of product data’, ACM SIGecom Exchanges,
Vol. 4. No. 1, pp.20–28.

Guo, J. and Sun, C. (2003d) ‘Context representation, transformation and comparison for ad hoc
product data exchange’, Proceedings of 2003 ACM Symposium on Document Engineering,
Grenoble, France, 20–22 November.

Handschuh, S., Schmid, B. and Stanoevska-Slaveva, K. (1997) ‘The concept of a mediating
electronic product catalog’, Electronic Markets, Vol. 7, No. 3, pp.32–35.

Kashyap, V. and Sheth, A. (1996) ‘Semantic and schematic similarities between database objects: a
context-based approach’, The VLDB Journal, Vol. 5, pp.276–304.

 Transforming ad hoc product data into canonical product representation 137

Keller, A. and Genesereth, M. (1996) ‘Multivendor catalogs: smart catalogs and virtual catalogs’,
EDI Forum: Journal of Electronic Commerce, Vol. 9, No. 3, pp.87–93.

Kumar, K. (2001) ‘Technology for supporting supply chain management’, Communications of the
ACM, Vol. 44, No. 6, pp.58–61.

Lee, M., Yang, L., Hsu, W. and Yang, X. (2002) ‘XClust: clustering XML schemas for effective
integration’, Proceedings of ACM CIKM’02, McLean, Virginia, USA.

Ng, W.K., Yan, G. and Lim, E. (2000) ‘Heterogeneous product description in electronic
commerce’, ACM SIGecom Exchanges, Vol. 1, No. 1, pp.7–13.

Omelayenko, B. (2002) ‘Integrating vocabularies: discovering and representing vocabulary maps’,
in I. Horrocks and J. Hendler (Eds.) ISWC 2002, LNCS 2342, pp.206–220.

Omelayenko, B. and Fensel, D. (2001a) ‘An analysis of B2B catalogue integration problems’,
Proceedings of International Conference on Enterprise Information Systems,
Setubal, Portugal.

Omelayenko, B. and Fensel, D. (2001b) ‘A two-layered integration approach for product
information in B2B e-commerce’, Proceedings of the 2nd International Conference on
Electronic Commerce and Web Technologies, Munich, Germany.

Omelayenko, B., Fensel, D. and Bussler, C. (2002) ‘Mapping technology for enterprise
integration’, Proceedings of the 15th International FLAIRS Conference, Pensacola, FL.,
pp.419–424.

Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J. and Widom, J. (1995) ‘Querying semistructured
heterogeneous information’, Proceedings of DOOD Conference, Available in http://www
-db.stanford.edu

Ricardo, D. (1912) The Principles of Political Economy and Taxation, introduction by Michael P.
Fogarty, London: Dent and Dutton.

Robinson, M. and Bannon, L. (1991) ‘Questioning representations’, Proceedings of ECSCW’91,
Amsterdam, Holland.

Schulten, E., Akkermans, H., Guarino, N., Botquin, G., Lopes, N., Dörr, M. and Sadeh, N. (2001)
‘The e-commerce product classification challenge’, IEEE Intelligent Systems, July/August,
Vol. 16, pp.86–c3.

Segev, A., Wan, D. and Beam, C. (1995) ‘Electronic catalogs: a technology overview and survey
results’, Proceedings of ACM CIKM’95, Baltimore, MD, USA, pp.11–18.

Shim, S., Pendyala, V., Sundaram, M. and Gao, J. (2000) ‘Business-to-business e-commerce
frameworks’, IEEE Computer, Vol. 33, No. 10, pp.40–47.

Smith, A. (1976) An Inquiry into the Nature and Causes of the Wealth of Nations, in
R.H. Campbell, A.S. Skinner and W.B. Todd (Eds.), first published in 1776, Oxford: Oxford
University Press.

Stanoevska-Slabeva, K. and Schmid, B. (2000) ‘Internet electronic product catalogs: an approach
beyond simple keywords and multimedia’, Computer Networks, Vol. 32, pp.701–715.

Steinfield, C., Wigand, W., Markus, M. and Minton, G. (2004) ‘Promoting e-business through
vertical IS standards: lessons from the US home mortgage industry’, Workshop on Standards
and Public Policy, Federal Reserve Bank of Chicago, Chicago, Illinois, 13–14 May.

Welty, B. and Becerra-Fernandez, I. (2001) ‘Managing trust and commitment in collaborative
supply chain relationships’, Communications of the ACM, Vol. 44, No. 6, pp.67–73.

Wombacher, A., Fankhauser, P. and Mahleko, B. (2003) ‘Matchmaking for business processes’,
Proceedings of IEEE International Conference on E-Commerce, IEEE Computer Society,
pp.7–11.

 138 J. Guo and C. Sun

Appendices

Appendix 1 Picker function

Assume that the data source type is defined in dataType = {XML, relational, plain} to
refer to XML files, relational database and other data that have to be manually processed.
The input is defined as inData = {code fragment, plain strings}. The expect output
outData = {normalised instance concepts} for the use of LOCAL PRODUCT MAP.

Function: Picker(inData){

 if dataType := XML then {

 Open(xsltProcessor);

 if outData := Process(inData) then return outData else Terminate(); }

 if dataType := relational then {

 Open(databaseProcessor);

 if outData := Process(inData) then return outData else Terminate(); }

 if dataType := plain then {

 if inData ≠ VOID then return outData : = inData else Terminate(); }}

Appendix 2 An example of XPM embedded in ebXML

Figure 9 An example of XPM embedded in ebXML

<SOAP-ENV:Envelope><SOAP-ENV:Body>
 <eb:Manifest SOAP-ENV:mustUnderstand="1"eb:version="1.0">
 <eb:Reference xlink:href="cid:ebxmlpayload11@boo.com" xlink:role="XLinkRole" xlink:type="simple">
 <eb:Description xml:lang="en-us">Purchase Order 1</eb:Description>
 </eb:Reference>
 </eb:Manifest>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

--BoundarY
Content-ID: <ebxmlpayload11@boo.com>
Content-Type: text/xml
<?xml version="1.0" encoding="UTF-8"?>
 <purchase_order>
 <po_number>1</po_number>
 <product xmlns="http://xpm.boo.org">
 <concept iid="1.33.26.8.7" >
 <concept iid="1.33.26.8.7.1">
 <concept iid="1.33.26.8.7.1.1" instance="USD"/>
 <concept iid="1.33.26.8.7.1.2" instance="500"/>
 </concept>
 </concept
 </product>
 </purchase_order>
--BoundaryY--

