
Inter-Enterprise Business Document Exchange
Jingzhi Guo

Department of Computer and Information Science
Faculty of Science and Technology, University of Macau

Av. Padre Tomás, Pereira, S.J., Taipa, Macau, Tel: +853-397 4890

 Email: jzguo@umac.mo

ABSTRACT
Electronic business document interoperation is the cornerstone of
business process integration. An essential issue for business
document interoperation is to maintain semantic consistency of
the exchanged business documents between any two autonomous
business communities, where the document sender and receiver
have no misunderstanding in using the exchanged documents.
Existing approaches to resolving this issue either adopts document
standards to map heterogeneous document elements or applies
business ontologies to mediate inconsistent document elements.
While these approaches are effective in certain degree, the issues
of limited flexibility and evolvability in using standards and the
lack of accuracy in using ontologies to mediate document ele-
ments must be explored and resolved. This paper proposes a Col-
laborative Document Exchange (CODEX) approach to resolving
the issues. In this approach, structures and concepts of business
document are separated and layered in CODEX framework. Struc-
tures provide the commonality of business documents through
classified concept identifiers while concepts support particularity
of business documents through collaboration.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces – Web-based interaction; H3.5 [Informa-
tion Storage and Retrieval]: Online Information Services – Shar-
ing Data; Web-based services.

General Terms

Theory, design

Keywords

Business document, semantic integration, semantic consistency
maintenance, document exchange, document interoperation, con-
cept collaboration, information sharing

1. INTRODUCTION
Electronic business documents interoperation is the cornerstone of
business process integration [18] and is an important topic for
electronic commerce [17]. An essential issue for business docu-
ment interoperation is how a business document can be faithfully
sent and received between any two autonomous business commu-

nities through computers, and the document sender and receiver
have not misunderstood the uses of the exchanged documents.
This faithfulness requires not only the consistent document struc-
tures but more importantly also the consistent meaning-level in-
terpretation of document contents between the sender and the
receiver. Without such faithfulness, interoperation cannot be es-
tablished between interaction parties or at most the interaction is
based on a wrong meaning interpretation.

For example, supposing that Party A has a business document
RequestForQuote(RequestorName, RequestorAddress, Request-
ProductList(Refrigerator(color, price(currency, value, unitScale)),
PriceTerm)), and Party B also has a document In-
quiry(InquirerName, InquirerAddress, ProductItems(fridge, mi-
crowave oven, …), TermsOfPrice(FOB, New York)). Now Party
A broadcasts its RequestForQuote document to all its possible
vendors. Party B as one of the potential vendors has received
Party A’s business document, but it cannot understand what Party
A is talking about.

Why can Party B not understand Party A’s document? Several
reasons can be listed:

1. B has different document name from A, i.e. Request-
ForQuote vs. Inquiry.

2. B has different document structure from A, i.e. Party A and
Party B structure document elements in a different way. In
a result, they have different control functions to read a
given document.

3. B has different document elements from A to indicate the
same meanings of elements, e.g. RequestorName vs. In-
quirerName, and RequestProductList vs. ProductItems.

4. B has different product name from A to refer to a same
product, e.g. refrigerator vs. fridge.

5. B has different method from A to represent a product, e.g.
Party A uses a tree structure to represent refrigerator while
Party B simply put products in a list.

These differences make Party B even unable to receive Party A’s
document when the document arrives, and have become the issues
that need to be solved.

With current technologies and practices, the above issue 1 (docu-
ment vocabulary interoperation issue) may be resolved through
using ontologies of semantic web to mediate the inconsistent se-
mantic terms between document names, e.g. ontological mapping
[19]. However, how to have those vendors who have no document
vocabulary/ontology mapping to receive an unknown document is
still an issue. The issue 2 (document structure interoperation issue)
may be resolved through a common document message structure

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

ICEC’06, August 14–16, 2006, Fredericton, Canada.
Copyright 2006 ACM 1-59593-392-1

427

supported by common document schemas (e.g. BizTalk public
schema [2], cXML procurement documents [4], RosettaNet
schema [25], ebXML business documents [5]). Nevertheless,
there is still an open issue in a broad sense. Can all documents in
the world be commonly structured? Indirectly, can we find a way
to accurately transform heterogeneous document structures? For
the issue 3 (document element interoperation issue), the Universal
Document Element Framework (UDEF) has proposed a solution
[30], but its element set is limited, and difficult to cope the dy-
namic change of document requirements beyond standard docu-
ment elements. The issue 4 and 5 (product data interoperation
issue [7][20][9]) belongs to product data integration research field,
which is discussed in the research of ontology mapping (e.g. [20]),
thesaurus linking (e.g. [16]) and product concept transformation
(e.g. [10]). Currently, existing product vocabulary approaches are
diverse in standardization [6][32], mediation [14] and collabora-
tive concept mapping [11]. There is still no consensus on resolv-
ing this issue. In the following of this paper, we refer all the above
issues as the semantic consistency issue of electronic business
documents between distributed and autonomous business parties.

To resolve the semantic consistency issue of business documents,
this paper provides an approach called COllaborative Document
EXchange (CODEX). Primarily, CODEX approach applies the
layer design thoughts from both semiotic concept analysis [26][1]
and communication protocol such as Open Systems Interconnec-
tion (OSI). This reflects in our novel separation of a business
document into the layers of document structure and document
semantics, where a document structure is meaningless with regard
to the interpretation of a business document and is only a con-
veyor for conveying document semantics. With this thought, any
investigated document has the underlying structure layer and the
higher semantics layer that denotes the structure layer. Thus, with
regard to the whole expected CODEX system, there are several
layers: each higher layer presents the semantics that is conveyed
in its lower structure layer such that “semantics ! structure (se-
mantic ! structure (semantics ! structure (…)))”. This design
thought not only provides CODEX with a good modular design
for reusing lower structure layer but also well explained what
really a metadata is (not simply data about data but semantics on
structure and as a whole to be another structure for its higher layer
semantics). Secondly, based on the layer design thought, our ap-
proach adopts many valuable taxonomy practices for term classi-
fication such as UNSPSC [32], ecl@ss [6] and UDEF [30].
Thirdly, we largely apply the collaboration thought in the process
of term classification, which makes the term/concept classification
accurate and semantically consistent between multiple autono-
mous business partners.

As a design principle, we take a trichotomy of systems, designers
and users: the systems provide tools and mechanisms for repre-
senting a consistent document structure model; the designers
(viewed as a type of knowledge workers1) resolve semantic con-
flicts that systems are not capable of; and the users simply use the
systems automatically. By this trichotomy, the semantic inconsis-
tency incurred from the human interpretation can only be resolved
in the semantic document design level, not in the lower level of

1 Knowledge workers: “Their main value to an organization is their ability

to gather and analyze information and make decisions that will benefit
the company. They are able to work collaboratively with and learn from
each other” [24]

CODEX system operations or in the higher user level for elec-
tronic business document exchange.

In the remainder of this paper, we describe the CODEX approach.
First, we introduce CODEX framework, then we define an ab-
stract document structure model. In Section 4, we implement this
abstract model in XML language. Section 5 provides the CODEX
system architecture and exemplifies the automatic document ex-
change on this architecture. Section 6 discusses some related
works. The final section concludes the paper, lists the contribu-
tions and limitations of CODEX approach, and proposes some
future works.

2. CODEX FRAMEWORK
Following the above design principle, a simplified CODEX
framework can be illustrated in Fig. 1, which includes four layers
of communication, document structure, semantics collaboration
and document exchange.
The communication layer is a business document transport layer
between sender and receiver. In this paper, we apply XML SOAP
[8] for document transports. Each business document is embedded
in the body of a SOAP message. The document structure layer is
for document structure modeling. There are two types of docu-
ment structures are modeled in this layer: one is business docu-
ment structure and the other is collaboration document structure.
The former will be conceptualized (i.e. to give meaning) by higher
collaboration layer as a semantic business document, and trans-
ported in the lower communication layer. A conceptualized busi-
ness document (also called as document template) has been se-
mantically given with the meanings of document name and the
inside semantic document elements during collaboration. The
purpose of this document is to contain both human- and machine-
understandable document meanings for both senders and receivers
during document exchange. The latter is conceptualized by higher
collaboration layer as an understandable collaboration document
for mediating common understanding between collaborative de-
signers of autonomous and heterogeneous semantic communities
[23]. The purpose is to record semantics agreements between
collaborative designers.

Communication
Layer

Document
Structure Layer

Semantics
Collaboration

Layer
Designer Designer

Sending Document Receiving

Automatic
Exchange layer

Business Docs Collaboration Docs

SOAP

Fig. 1: Simplified CODEX Framework

Above the document structure layer is the semantics collaboration
layer. Document designers in here resolve their semantic consis-
tency issue in both document element creation and document
composition. In this layer, the semantics of a term/concept refers

428

to the meaning of a term in a vocabulary, which specifically refers
to a concept/term set, for example, a set of document names,
document elements or product terms. The top layer is the auto-
matic exchange layer, which is a user layer. In this paper, we as-
sume that semantic consistency issue can be resolved in the lower
three levels. Thus, all documents and their inside terms/concepts
can be semantically understood between sender and receiver.
Therefore, users can automate the business document exchange
without misinterpreting the exchanged business documents.
Since using XML SOAP as message transport structure is well-
known and the automatic document exchange in user layer is
based on the lower two layers, the rest of this paper only focuses
on the discussion of document structure layer and semantics col-
laboration layer provided in the CODEX framework.

3. DOCUMENT STRUCTURE MODELING
The core of document structure layer is the abstract document
structure model, which governs the way of enabling the imple-
mentation of this structure into the exchangeable documents in
communication layer and the conceptualization of the structure
into semantic documents in semantics collaboration layer. In this
section, we will first briefly introduce some background knowl-
edge of semiotic concept analysis. Based on this knowledge, we
will model two types of document structures: a business document
structure model that represents the general structure of a business
documents (e.g. invoice, order sheet, etc.), and collaborative
document structure model that represents some general structures
of collaborative documents (e.g. a mapping document for various
designers to work on).

3.1 Introduction to Semiotic Concept Analysis
A great influence on the following CODEX solution design is the
semiotic concept analysis. According to Sausure’s dyadic repre-
sentation model ([26]:67), a representation (a sign) consists of two
parts: a structure or a form (a signifier) and a concept or a mean-
ing (signified), where for a given representation, structure takes
the forms of representation and means nothing but just holds and
conveys the concept. The model in Barthes’ orders of significa-
tion ([1]:114:115) further explains that the structure and concept
of a representation as a whole can again becomes a structure (sig-
nifier) that is denoted by a concept (signified), where the inside
concept of this denoted structure is a connotation of the higher
level concept. Thus, a concept is recursive, which denotes a same
level structure and connoted by a lower level (inside) concept that
again denotes its own level structure. This forms a concept tree
naturally associated with a hierarchical structure with many levels.
Thus, when we refer to a business document (e.g. inquiry sheet),
the name “inquiry sheet” is a concept that denotes a document
structure. Inside of the document structure, we have many lower
level document elements, which may be the concepts of “inquirer”,
“address” and “product list”. Each of them denotes its own struc-
ture. If we line the same level concepts in a sequence and mark
them with sequential number, then we obtain a concept tree (1,
i, …, i) [10] where “1” identifies the root concept to denotes the
document structure of “inquirer”, and inside concepts can be iden-
tified as 1.1, 1.2, …, 1.i to denote the structures of “1.1!address”
and “1.2!product list”. When any vocabulary is notated in this
way, we could obtain a uniquely identified vocabulary tree, which
is layered metadata (i.e. semantics about semantics or structure
about structure, just choosing as one like) and can be referenced in
other vocabularies.

3.2 Business Document Structure Model
A business document structure model describes the structure rela-
tionship within the scope of business document representation. It
regulates the data relationship of business document structure.
Definition 1: Business Document Structure Model (BDSM)
A BDSM is described as a tuple such that BDSM = (D, E, IID, AN,
T, V), where:
! AN is a set of annotation/definition of a term/concept.
! IID is a set of unique term/concept numeric identifier such

that iid " IID # an " AN (interpreted as iid is uniquely
annotated by an an) and IID = (1, i, …, i) is an internal
concept tree defined in, or alternatively iida # iidb, which
means a unique term/concept identifier in one vocabulary
can be uniquely annotated by another term/concept identi-
fier in another vocabulary.

! D is a taxonomy of business documents such that D is a
tree structure and d " D is a document node in document
taxonomy D, where d # iid (interpreted as an iid uniquely
identifies a document d).

! T is a set of predefined data types (e.g. string, number, etc.)

! V is a set of values such that V # T (interpreted as the
term/concept value V is instantiated by data type T).

! E is a set of document elements such that there exist some
e" E in a document d where all e in this d is organized in a
tree, and e # iid (interpreted as for each e in a document d,
e is uniquely identified by an iid), and optionally v " V
#opt e (interpreted as e optionally has term/concept value v
if $e " d is a reified document).

Intuitively, BDSM can be illustrated in a diagram shown as in Fig.
2, where a set of documents {di | i " 0…n} " D is classified in a

tree D rooted from a document d1 " D created by D, and a set of
document elements {ej | j " 0…m} " di forms a another tree
rooted from a document element e1 " di created by di and each ej
optionally has a typed value ej ! (v " V, t " T) if di is reified.

D(iid, an)

...

d(iid1.1, an)

d(iid1.2, an)

d(iid1.i, an)

d(iid1.n, an)

...

...
...

d(iid1.i.1, an)
d(iid1.i.2, an)

d(iid1.i.i, an)

d(iid1.i.n, an)

...

e(iid1.1, iida)

e(iid1, an) = e1

d(iid1, an)
=d1

Create
Document
Vocabulary
root Create

Document
Element root

e(iid1.2, iidb)

e(iid1.j, iidu)

e(iid1.m, iidw)

...

(v, t)
(v, t)

(v, t)

(v, t)

e(iid1.1.1, iidc) (v, t)

e(iid1.1.2, iidd) (v, t)

...

e(iid1.1.j, iidx) (v, t)...

e(iid1.1.m, iidz) (v, t)

For concept , which
is in the concept vocabulary W

(an iidw) W

For concept , which
is in the concept vocabulary M

(an iidz) M

Fig. 2: Illustration of BDSM

3.3 Functions and Benefits of Using IID
For a given document vocabulary, the function of IID in BDSM is
to provide the programmable identifier structure for how the fu-

429

ture designed terms/concepts can be dynamically identified based
on the concept tree IID = (1, i, …, i) when an annota-
tion/definition is given to the document name of a given document.
Similarly, a document element name is also assigned a dynamic
term/concept identifier iid based on the rule of IID. The difference
is that the annotation/definition of a document element identifier
iide can be another term/concept identifier iidx which is defined in
another vocabulary N, which may or may not be designed in a
similar way.
The introduction of IID-ed term/concept identifier written in a
way of a numeric tree path (e.g. 1.52.14.15.1) fully eliminates the
ambiguity and heterogeneity in the arbitrary use of human de-
signed term/concept identifiers such as UNB, UNH and BGM
used in EDI. It has increased the accuracy in mapping heteroge-
neous terms/concepts between contextually different semantic
communities. The second benefit is that heterogeneous
terms/concepts of different natural languages or dialects can be
easily mapped without the need to consider whether the other
participants are using other languages. Another extra benefit is
that since an iid is a regular numeric tree path expression, it can
immediately find out its given position in a vocabulary and know
who are its parent and ancestors. For example, 1.52.14.15.1 refers
to 1:ProductCatalogue(52:domestic appliances and consumer
electronic products(14:domestic appliances(15:kitchen appli-
ances(1:refrigerators)))). With this contextual knowledge, when
we are given the unique identifier 1.52.14.15.1, we can not only
know what 1.52.14.15.1 refers to but also do all its ancestors such
as 1.52.14.15 referring to “kitchen appliances” and 1.52.14 refer-
ring to domestic appliances”. This is extremely useful to infer
whether two seemingly same annotations are really identical in
meanings if we need to decide whether two terms/concepts are
from the same context.

3.4 Collaborative Document Structure Model
A collaborative document structure model describes the structure
relationship within the scope of designers’ collaboration represen-
tation. In another word, it represents how the collaboration results
can be mediated between semantically inconsistent parties.
Collaboration, in general, has three modes: peer-to-peer collabo-
ration (P2P), dominator-to-follower collaboration (D2F) and
requestor-to-answerer collaboration (R2A). P2P means that all
collaborators are equal. They negotiate with each other to resolve
their semantic inconsistencies in designing terms/concepts for a
vocabulary. D2F means that there are some collaborators that are
strong enough in positions (i.e. dominators). They design the
terms/concepts for a vocabulary and has other collaborators (i.e.
followers) to use or map their designed terms/concepts. This col-
laborative mode is similar to the process of standardization and
adoption. R2A means that some collaborators (i.e. requestors) are
incapable of designing the useful terms/concepts (e.g.
terms/concepts that can be accepted everywhere) and then request
some capable collaborators (i.e. answerers) to design useful
terms/concepts in a vocabulary. These three collaborative modes
lead to the different structure models for representing collabora-
tive relationships. Besides the above three different collaborative
modes, the different execution times for collaboration (i.e. syn-
chronous collaboration (SYNC) and asynchronous collaboration
(ASYNC)) also affect the design of structure model for represent-
ing collaboration relationships. In this subsection, we will de-
scribe an integrated model to concern the above different collabo-
ration modes.

3.4.1 Generic CDSM
Definition 2: Collaborative Document Structure Model (CDSM)
A CDSM is described as a tuple CDSM = (AN, T, CVT, IID, AID,
C, P, U, C!, L!, CU, LU), where:
! AN is a set of annotations/definitions exactly as defined in

Definition 1.
! IID is a set of unique term/concept numeric identifier ex-

actly as defined in Definition 1.
! AID is a set of alias identifiers corresponding to IID.
! T is a set of predefined data types exactly as defined in

Definition 1 for constraining values.
! CVT is a set of conversion functions that convert one data

type to another data type (e.g. 1 pair = 2 piece or 1 dozen =
12 pieces, and 1 dozen pair = 12*2 piece).

! C is a set of concepts such that C = (IID, AN, T, CVT),
where AN ! IID and (T, CVT) ! value.

! P is a set of vocabulary/document designers.
! U is a subset of P, called a semantic community [23] such

that for any two U1 and U2, U1%U2=&.
! C! is a P2P collaboration mechanism.
! L! is a D2F collaboration mechanism.
! CU is a subset of P, called common semantic community,

such that given any two semantic communities U1 and U2,
there exists a P2P collaboration mechanism C! that makes
CU={U1, U2}, where for all concepts C1 designed by U1
and for all concepts C2 designed by U2, there is a set of
shared concepts C, called common concepts, such that C1
and C2 semantically equivalent to C, notated as CCMAP(C1,
C) and CCMAP(C2, C). Since AN!IID, the concept shar-
ing relationship can also be notated as CCMAP(IID1, IID)
and CCMAP(IID2, IID). The designers in CU are called
common concept designers CP.

! LU is a subset of P, called local semantic community, such
that given a semantic community CUx ' CU and a semantic
community Uy (CU, there exists a D2F collaboration
mechanism L! that makes LU={CUx, Uy}, where for all
concepts C1 designed by Uy and for some common con-
cepts C2 designed by CUx, there is a mapping relationship
LCMAP(C1, C2), where C1 is semantically equivalent to C2.
The C1 is called local concepts. Since AN!IID, the con-
cept mapping relationship can also be notated as
LCMAP(IID1, IID2). The designers in LU are called local
concept designers LP.

The above CDSM has depicted the collaboration relationships of
P2P in a common semantic community and D2F in a local seman-
tic community. These collaboration relationships are represented
in the form of concept storage method. For example, given a
common semantic community with two common concepts CU1:
C1(1.52.14.15.1, refrigerator) and CU2: C2(1.52.14.15.1, !"#),
and two local semantic communities with two local concepts LU1:
C3(xyz1, fridge) and LU2: C4(XG2, $%), since we have P2P
collaboration relationship between CU1 and CU2, the semantic
consistency between “refrigerator” and “!"#” can be main-
tained and uniquely identified by “1.52.14.15.1”. Also since we
have D2F collaboration relationship between CU1 and LU1 and
between CU2 and LU2, we have maintained semantic consisten-

430

cies between “refrigerator” and “fridge” with lcmap(1.52.14.15.1,
xyz1) and between “!"#” and “$%” with lcmap(1.52.14.15.1,
XG2). With this representation structure, it allows heterogeneous
semantic communities to work together to design semantically
consistent concepts for incremental vocabulary creation.

3.4.2 Synchronous and Asynchronous Collaboration
CDSM model is an evolvable model, i.e. common concepts and
local concepts are constantly ADDED and DELETED to adapt to
the new customer requirements during both synchronous and
asynchronous collaboration. This poses a significant challenge of
how to maintain semantic consistency between a common docu-
ment (i.e. a set of common concepts) and many local documents
(i.e. many sets of local concepts) in a dynamic environment. This
subsection first redefines the local document structure and then
provides the mechanism and principle for the two primitive opera-
tions ADD and DELETE to cope with this challenge.
Definition 3: Local Document Structure
Given a common document structure D(ComIID, AN, <others>),
then a local document structure is defined as D(LocIID, ComIID,
AN, <others>) such that comIID!LocIID, where ComIID is a
concept tree (1, i, …, i) for a common document element identifi-

ers and LocIID is the set of local document element identifiers.
With this definition, a local document is always a concept subset
of a common document and partially retains the document tree
structure of the common document. Thus, a local-common con-
cept map LCMAP(ComIID, LocIID) between common document
and local document is, in fact, locally maintained in the local part
of a local semantic community LU in D(LocIID, ComIID, AN,
<others>).

Now, suppose that, in a common document, a comIid"ComIID is
added (e.g. add 52 from 1.14.15 to 1.52.14.15), the ADD result
must also reflect in all local documents. Obviously, we have two
cases for ADD operation: synchronous ADD and asynchronous
ADD. To support the both types of ADD in a flexible way, we
apply the state-of-the-art flexible notification technique discussed
in [28] and create a one-way buffer mechanism, where two buffers
are built: one outgoing buffer (OB) for common document as
output and one incoming (IB) for local document as input. Two
buffers OB and IB are causally ordered based on the sequence of
the ADD operations on common document such that IB=OB. If
the local document is online, then IB is immediately operated on
the local document in a synchronous way. If it is offline, then the
ADD operations are accumulated in OB until it becomes online to

cp

c(accounting documents)

c(marketing documents)
c(inquiry sheet)

c(quotation sheet)

cp1

Common document vocabulary design

d(d.2.3.3)
d(d.2.3.4)

d(d.2.3.4.5)

d(d.2.3.4.6)
Common document

vocabulary

c(&'()*)

c(+,()*)

c(-./)

c(0./)

Common document vocabulary design

D = {iid} = business document vocabulary

cp2

P2P Collaboration

Inquiry sheet d.2.3.4.5 d.2.3.4.5 -./

d.2.3.4.5 = {iid<--iidx} = business document element vocabulary of d.2.3.4.5
e(1, d.2.3.4.5)

e(1.1, buyer.2.3)
e(1.2, buyerAddess.7.8)

e(1.5, product list, resource.4.5)

Common business document
elements of d.2.3.4.5

...

c(1.5.1, p.52.14.15.1)

e(-./1
e(23)
e(23451

e('67/,89(:: ;<1

...

c(!"#)

e(inquiry sheet)
e(buyer)
e(buyer address)

e(product list, data type: set)

...

c(refrigerator)

cp2cp1

Common business document design

Common Business
organization
vocabulary

Common
Enterprise resource

vocabulary

Common
Product data
vocabulary

cp1 cp2

buyer buyer.2.3
buyer address buyerAddress.7.8

refrigerator p.52.14.15.1
product list resource.4.5

buyer.2.3 23
buyerAddress.7.8 2345

p.52.14.15.1 !"#

resource.4.5 '67/

Common business document design

D

d.2.3.3
d.2.3.4

d(d.2.3.4.1,
firm intro)

from

Onlined(sales documents, SA, d.2.3.4)
d(firm intro, d.2.3.4.1)
d(RequestQuote, SA-RQ, d.2.3.4.5)

Local company lu1 lp1

d(Sales document, GX, d.2.3.4)
d(InqDoc, GX-XJ, d.2.3.4.5)

Local company lu2lp2

Offline

cp

d.2.3.4.5

from

e(1.1)
e(1.2)

e(1.5, product list)
e(1.5.1)

e(Maifang, buyer, 1.1)
e(MFDZ, buyerAddr, 1.2)
e(CPQD, ProdList, 1.5)
e(CPQD,ProdList, 1.6)

lp2 Local company lu2

D2F Collaboration
D2F Collaboration

e(Purchaser, 1.1)
e(PurchaserAdd, 1.2)
e(Commoditites, ER30, 1.5)

Local company lu1 lp1
D2F Collaboration

Offline Online

D2F Collaboration

They have added
after the creation

P2P Collaboration

Collaboative Concept Design Collaboative Concept Design

Add(d.2.3.4.1,
firm intro) Empty

OB IB
Add(d.2.3.4.1,

firm intro)

OB
Add

(d.2.3.4.1,
firm intro)

IB

Flushed after added

They have deleted
after the creation

Add(1.6, 1.6:=1.5)
Delete(1.5)

OB
Empty

IB
Add(1.6, 1.6:=1.5)

Delete(1.5)

OB
Add(1.6, 1.6:=1.5)

Delete(1.5)

IB

Fig 3: Illustration of CDSM

431

execute the asynchronous collaborative ADD operations.
For the DELETE operation, since the classification structure itself
requires semantic consistency maintenance [12], before using the
above buffer mechanism, a DELETE principle must be followed.
That is, prior to deleting a comIid1"ComIID, the deleted element
concept must first be added to another node of comIid2"ComIID
and then to execute the DELETE operation with one-way buffer
mechanism, or a concept deletion must first be notified as “delet-
ing concept” and can be finally deleted until it is no longer used in
all local documents. The notice of “deleting concept” is an ex-
plicit request to local document designers that they should not use
this element concept any more for further documentation and
should append the deleting concept to other concepts.
The one-way buffer mechanism is a push approach, which main-
tains a very fine grain for notification message (in our case only
the concept identifier IID and/or concept annotation AN) in a one-
to-many manner. The DELETE principle is a guarantee of seman-
tic consistency. The combined use of both ensures the require-
ments of evolvability and accuracy.
In the context of e-commerce applications, the cost of one-way
buffer mechanism will not be high, because we can assume all e-
commerce applications stay online. The “offline” happens only in
emergency cases. This assumption is important because the fine
grain notification message can almost neglect the buffer cost but
the large buffer may require additional mechanisms and may
cause network congestion. Thus, for e-commerce applications, the
one-way buffer mechanism is flexible and allows millions of local
documents to collaborate with a common document.
The discussion of implementing one-way buffer mechanism is out
of the scope of this paper. In the following subsection, we will
demonstrate the innovative CDSM model in a graphical way.

3.5 Graphical Demonstration of CDSM
Fig. 3 uses the motivation example of Section 1 to demonstrate
how various concept designers in different semantic communities
can work together to resolve their semantic discrepancies in busi-
ness document design.

First, a group of common concept designers cp1, cp2"CP collabo-
rate with each other in P2P mode (we assume that common con-
cept designers may use a common language of English or multiple
languages). They achieve their consensus in the meanings of each
business document name and represent these document names in
numeric iid " IID (e.g. marketing document = +,()*
!d.2.3.4.5). Each iid is automatically generated based on the IID
generation rule (i.e. identifier computed on the concept tree (1,
i, …, i)). When differently expressed document names are con-
verged to a same unique iid, they become interoperable between
multiple semantic communities through this iid.
Second, given a document iid, the P2P common concept designers
cp1, cp2"CP now can design this iid-ed business document tem-
plate (i.e. common business document d.2.3.4.5 shown in Fig. 3),
which is a set of document elements aligned in a tree structure and
identified by a set of {iid}. The tasks of document template de-
signers are in three aspects: to collaboratively design the needed
document elements (i.e. buyer)23, …, product list)'67
/), to collaboratively align these elements in the mutually agreed
tree structure (i.e. 1, 1.2, …, 1.5), and to collaboratively reference
each document element with a field concept that is used for
document element value instantiation (i.e. 1.1!buyer.2.3, …,

1.5!resource.4.5). This final step, in fact, associates each docu-
ment element with an external concept that is again collabora-
tively designed for making agreements on concept definition,
unique identifier, data type and possible conversion function ap-
plied (e.g. the vocabulary of common organization vocabulary,
common enterprise resource vocabulary, and common product
data vocabulary shown in Fig.3).
Third, after the document vocabulary and common document
templates are designed, they can be used by local concept design-
ers lp1, lp2"LP in the way of D2F collaboration mode (we assume
that local concept designers use a single language such as English
or Chinese). In this collaboration mode, local designers can
browse the document vocabulary through Internet program to
create their own tailored and personalized document vocabulary
and business document templates. They can substitute common
document names and document elements in their own terms and
can shrink the tree structure of the document vocabulary and
document templates shown in the D2F collaboration between
local concept designers lp and common concept designers cp (e.g.
SA-RQ for d.2.3.4.5 in lu1 and GX-XJ for d.2.3.4.5 in lu2).
Fourth, an extremely important issue in designing vocabu-
lary/document is to enable a common vocabulary/document to be
dynamically revised as the business requirements or the expansion
of the vocabulary/document. This issue often bothers many exist-
ing international product and document standards such as
UNSPSC [32] and UDEF [30]. The CDSM model provides a one-
way buffer mechanism and a DELETE principle to handle this
problem. For example, the operation of adding a docu-
ment/vocabulary term is first causally ordered in the outgoing
buffer OB as sending message and then placed in the incoming
buffer IB as receiving message. If the local vocabulary/document
is online, the IB is immediately executed synchronously (e.g.
d(firm intro, d.2.3.4.1) is added in lu1 shown in Fig. 3). If it is
offline, the ADD and DELETE operations are accumulated in OB
until it is online to transfer into its IB. A DELETE operation is
either as developed into a conditional MOVE operation (i.e. first
ADD then DELETE) (e.g. DELETE(1.5) = ADD(1.6, 1.6:=1.5)
AND DELETE(1.5) shown as in Fig. 3 for lu2) or is a complete
DELETE operation with a “deleting concept” notice to local con-
cept designers (it cannot be deleted immediately until no local
document uses it).
In the following section, we will discuss the implementation of
above discussed BDSM and CDSM models.

4. DOCUMENTING IN XML
The document structures modeled in Section 3 are abstract data
models. To be usable for computer understanding in a semantic
way, this section implements these models in XML language for
semantic encoding because XML is a platform independent lan-
guage and can be encapsulated in XML SOAP [8] for transparent
message transport. Since we regard a document name vocabulary
as a set of concepts, we can apply XML concept generation rules
(1, i, …, i) to implement it and thus will not discuss it here. In this
section, we focus on the implementation of BDSM and CDSM,
which represent the document element relationship and designer
collaboration relationship.

4.1 XML Business Document
An XML implementation of business document is to implement
the abstract language BDSM = (D, E, IID, AN, T, V). Its require-
ments are firstly not to lose the simplicity of BDDM, secondly to

432

keep its evolvability of IID, and thirdly to enable the values of
document elements to take strongly typed values. To meet these
requirements, we define NML Business Document (NBD) in the
following as a set of revised XML rules discussed in [10].
Rule 1 (Document Element Connotation): Assuming a document
element e " E of BDSM is a concept tree node that is connoted by
zero-to-many subtree nodes {e} and each document element e can
optionally has a value v " V of BDSM, then it can be mapped
onto an XML document tree defined in an XML DTD:

<!ELEMENT bd (e*)>
<!ELEMENT e (#PCDATA | e*)>

where the root element bd is a document level element identified
by the currently selected business document iid " D. The connota-
tion e* (a set of document element concepts) map onto a set of
child nodes of business document element concepts. A child ele-
ment concept is again connoted by a set of child element concepts
until to leaf element concepts. Take the example of the Party A
case of Section 1, we have:
<bd]<^--RequestForQuote--]

<e]</e]<^--RequestorName--]
<e]</e]<^--RequestorAddress--]
<e]</e]<^--Request-ProductList--]

<e]<^--Refrigerator--]
<e]</e]<^--color--]

 <e]<^--price--]
 <e]</e]<^--currency--]
 <e]</e]<^--value--]
 <e]</e]<^--unitScale--]
 </e]
<e]</e]<^--PriceTerm--]

</e]
</bd].
Rule 2 (Document Element Denotation): Assuming that document
elements e " E is defined in a tuple of E = (IID, AN, T) from the
model BDSM, then a document element e has attributes iid " IID,
an " AN or an external iid " (any applicable vocabulary) and an
data type t " T. They can be mapped onto an XML node with
DTD definition as following:
<!ATTLIST bd
 d:iid ID #REQUIRED

xmlns:d CDATA #REQUIRED
 xmlns:r CDATA “”>
<!ATTLIST e iid ID #REQUIRED
 an CDATA #REQUIRED
 r:iid CDATA “”

r:t CDATA “”>
where the xmlns:d namespace points to the document name vo-
cabulary, which uniquely identifies the whole document. The
document element iid is dynamically generated during document
conceptualization. The external iid that can substitute an an is
from the namespace xmlns:r for containing external resources
such as organization vocabulary, enterprise resource vocabulary,
product data vocabulary and data type vocabulary. It must be
noted that resource namespace is for real vocabularies that are
used to validate the document elements in conceptualization of
the DTD into document templates. Certainly, to increase process-
ing speed, this namespace can be stored locally if possible. How-
ever, to provide the distributed design of business document tem-

plates, it is in principle placed anywhere on Internet for run-time
validation of external concept identifiers. For example:
<bd d:iid=dd.2.3.4.5d

xmlns:d=“http://default-document”
xmlns:r=dhttp://resourced]

<e iid=de.1d an=“buyer” r:iid=dbuyer.2.3d r:t=dstringd/]
<e iid=de.5d an=“product list”

r:iid=dresource.4.5d r:t=“set”/]
</bd].
When the above semantically conceptualized document template
is needed to take values for real use, the document experiences a
process of reification, for example:
<bd d:iid=dd.2.3.4.5d

<!-- omitted namespaces, see above example -->
<e iid=de.1d an=“buyer” r:iid=dbuyer.2.3d r:t=dstringd]

Haier
</e>
<e iid=de.5d an=“product list” r:iid=dresource.4.5d]

<e iid=de.5.1d an=“product name” r:iid=dp.52.14.15.1d
r:t=dstringd]Refrigerator </e]</e]

</bd].
Rule 3 (Document Element Classifier): Each document element
has a unique identifier iid in its current document. This identifier
is used to identify the corresponding element concept. The dy-
namic iid generation is based on the IID rule such that the docu-
ment root node is “1” and its child nodes are 1.1, 1.2, …, 1.n. This
rule classifies all iids of a business document such that given a
current iid1.i…i then its new sibling element identifier is iid1.i…(i+1)
and its new child element identifier is iid1.i…i.(i+1).
Given the above Rules, during P2P collaboration between docu-
ment designers, business document templates are designed with
mutually agreed AN (annotation), IID (element concept identifier),
T (data type for each element value) and the application of exist-
ing vocabulary namespaces. This collaboration is a process of
conceptualization of an abstract business document structure (i.e.
a DTD) into a semantically conceptualized business document
template (i.e. filled with the document element concepts). When
this template is further reified (i.e. the template is used and the
document elements are given values, e.g. XYZ such that <e
iid=“1.2.3””> XYZ </e>), we say that a business document tem-
plate has a reification.

4.2 XML Collaboration Document
The key to implement CDSM is to build the collaboration rela-
tionship between collaborators between different semantic com-
munities. To represent the collaboration relationship, we assume
that all concepts C of different vocabularies involved in a business
document (e.g. document name vocabulary, product data vocabu-
lary, enterprise resource vocabulary, organization vocabulary and
data type vocabulary) have been created elsewhere such that C =
(IID, AN, T, CVT), where AN ! IID and (T, CVT) ! value de-
fined in Definition 2, and each iid identifies a concept c " C such
that iid # c.

4.2.1 P2P Collaboration
Based on this assumption, the requirements of implementation are
to enable P2P collaboration in synchronous mode, and to provide
the flexibility of collaborative concept editing in different
autonomous semantic communities. To meet these two require-
ments, we define NML Collaboration Document (NCD) in a set of
concept mapping rules.

433

Rule 4 (P2P Collaboration): Given any two P2P collaborative
semantic community cu1, cu2 " CU, then the collaborative editing
relationship between cu1 and cu2 can be mapped onto two XML
DTDs:

<Rule 1 + Rule 2 +
lock (yes | no) #REQUIRED><--GBD-->

Assuming that prior to using Rule 4, Rule 1 and Rule 2 are used to
build P2P common business document templates CBD for all P2P
collaborative semantic community cu1 and cu2. The DTD of Rule
4 thus builds a P2P global business document template GBD,
where a lock attribute is additionally added to each document
element. For each cbd"CBD, its element identifier set {iid} is
exactly the same as that of the GBD, except for the annota-
tion/term definition language may different. When a common
concept designer cp"CU wants to create new element concepts in
leaf elements, s/he just switches the lock to “yes”. If s/he edits a
document element that is not a leaf element, after s/he locks the
element, others cannot edit not only this element e:iid and but also
all its child element e:iids, but others can lock any child elements
to edit the annotation e:an, the external resource r:iids or the data
type r:t (i.e. the attribute values of r:iid or r:t). This is because the
annotation and the external concept identifiers do not affect the
integrated IID structure of the being edited business document, i.e.
the document template can be developed in an anticipated way.
The lock including a dead lock prevention mechanism guarantees
that no simultaneous editing will occur to induce side effect of
semantic inconsistency between the collaborators cps of a com-
mon semantic communities cu.
If a common business document template cbd has already been
mapped onto some local business document templates LBD, then
an outgoing buffer mechanism OB must be built for supporting
D2F collaboration. In the following, we describe the D2F collabo-
ration in details.

4.2.2 D2F Collaboration
For the D2F collaboration between local designer lp " lu and a
common designer cp " cu, the collaboration relationship is differ-
ent from P2P collaboration:

! Any local business document lbd"LBD in lu only takes a
subset of the document elements e of the common business
document cbd in cu such that {e " lbd} * {e " cbd}.

! The local document designer lp has no right to revise the
common business document cbd. However, both lp and cp
have the right to revise their own document elements, i.e.
both are autonomous such that the representation of an e "
cbd is different from an e " lbd. No right to revise cbd
from lp simplifies the collaboration but the mutual auton-
omy of cp and lp complicate the collaboration relationships.

! D2F collaboration must consider both asynchronous and
synchronous collaboration models.

Based on the understanding of these differences, we define the
following XML rule:
Rule 5 (Local-to-Common Concept Mapping “LCMAP”): Assum-
ing both lu and cu have a business document template conceptual-
ized from the DTD defined by Rule 1 and 2 such that local de-
signer lp always copy and personalize the cbd into his/her own
local lbd such that lbd semantically belongs to cbd, then there is a
local-to-common concept mapping LCMAP between lbd and cbd
such that lcmap(cbd, lbd). Since both cbd and lbd can semanti-

cally expressed as the set of concept identifier IID, we have
lcmap(ComIID, LocIID).
Following the definition 2, we merge the local-to-common con-
cept mapping relationship into the new DTD of local business
document template by revising the DTD defined by Rule 1 and 2,
such that:

<!ELEMENT lbd (e*)>
<!ELEMENT e (#PCDATA | e*)>
<!ATTLIST lbd

locIid CDATA #REQUIRED
comIid ID #REQUIRED>

<!ATTLIST e locIid ID #REQUIRED
 comIid #REQUIRED
 an CDATA #REQUIRED>

where the element concept mapping relationship between cbd and
lbd is aligned into the same document element.
When a common designer cp edits a document element concept e
in common business document cbd, it places the editing results in
its outgoing buffer OB, which is received by the incoming buffer
IB of a local business document lbd and is used to be executed on
the lbd.

4.2.3 Comparing P2P and D2F Collaboration
Comparing the P2P and D2F collaboration2, P2P collaboration has
introduced the mechanisms of locking. Why a lock has to be used
is that semantic level collaboration is different from the normal
syntactic level collaboration, which aims only to present an iden-
tical document presentation state of multiple replicated documents
(e.g. collaborative text document [29]) between multiple collabo-
rative parties. Semantic level collaboration requires that the col-
laborative results must reflect the identical concept (i.e. meaning)
interpretation of both document template structure evolution and
the term concepts used in conceptualizing the document templates
between multiple collaborators. Thus, the simultaneous revision to
a same business document will generate unrecoverable semantic
inconsistencies, which is not tolerable in semantic interoperation
between business partners. In this sense, locks placed in a global
business document template common to all P2P collaborators are
desirable. Contrasting with D2F collaboration, since common
document designers cp are in a dominant position, the local
document designers lp have no rights to edit common business
documents. Thus, cp has no need to issue a lock for any of its
revising document element. However, it must have a mechanism
to advise lp that an element is revised but still keeps lp in a se-
mantic consistent way. This is why a one-way buffer mechanism
is developed. This mechanism not only resolves asynchronous
issue but also links heterogeneous semantic element representa-
tions in a persistent local business document template.

5. CODEX SYSTEM
This section describes CODEX system to the issue of semantic
consistency maintenance (see Fig. 4).

5.1 System Architecture
The CODEX system is Web-based. Its architecture includes four
types of participants: business document service providers for
collaboration and transformation (BDSP), common document

2 The R2A collaboration mentioned in Section 3.3 requires a very different

collaboration mechanism and will not be discussed in this paper.

434

designers (CDD), local document designers (LDD), and business
document users (BDU). All participants are connected and com-
municated through SOAP messaging, where the exchanging docu-
ments are embedded in the SOAP body. To facilitate the design
collaboration between CDDs and LDDs and the document ex-
change between BDUs, the business document service providers
BDSP provide two types of software engines: the document col-
laboration engine and the document transformation engine. The
document collaboration engines include common-to-common col-
laboration engine (CCCE) and local-to-common collaboration
engine (LCCE). The CDDs collaborate with each other in P2P
collaborative mode on CCCE to design common business docu-
ments (CBD). During their collaboration, they can lock and check
the collaboration status through the global document with locks
(GBD) This document is kept in BDSP and coordinates the con-
current design of the element nodes of common document tem-
plates. In the design of common document templates, CDDs can
also access to a large number of external vocabulary resources
(Resource) such as product vocabulary, which are managed by
Collaboration Manager of BDSP. The LDD and CDD collaborate
with each in D2F collaborative mode on LCCE to design local
business documents (LBD). Through their collaboration, local-to-
common concept maps (LCMAP) are created to map local docu-
ment elements and common document elements. The document
transformation engines can be classified as common-to-common
transformation engine (CCTE) and local-to-common transforma-
tion engine (LCTE). A CCTE automatically transforms one com-
mon user business document (BizDoc) received from LCTE into
another common BizDoc based on the common IID. An LCTE
automatically transforms a local BizDoc received from local
transformation user interface (LTUI) into a common BizDoc
based on the local-to-common concept maps in local business
documents (LBD).

INTERNET

LDDLDD

lbd lbd

Applet

LCCE

Applet

LCCE

Collaboration
Manager

Common
Documents
with locks

BDSP

CDD

CCCE

cbd cbd

CCCE

CDD

P2P collaborationD
2F collaboration D2

F
co

lla
bo

ra
tio

n

BDU BDU

biz
doc

biz
doc

Automatic
document
exchange

ResourceResourceResource

LTUI LTUI

LCTE

LCTE
CCTE

LCTE
CCTE

LCTE

Fig. 4: CODEX Architecture

5.2 Automatic Document Exchange Example
We exemplify automatic document exchange ability of CODEX
solution in Fig. 5 based on the system architecture of Fig. 4 and
XBD and XCD languages designed in Section 4.

<?xml version='1.0' ?>
<!DOCTYPE bd SYSTEM "bd.dtd">
<bd d:iid="SA-RQ" xmlns:d="http://LU1/docs" xmlns:r="http://LU1/resources">
 <e iid="e.1" an="requestor Name" r:iid="R_NAME" r:t="string">Collins</e>
 <e iid="e.2" an="requestor address" r:iid="R_ADDR" r:t="string">New York</e>
 <e iid="e.5" an="product list" r:iid="P_LST" r:t="set">
 <e iid="e.5.1" an="kitchen fridge" r:iid="P356">
 <e iid="e.5.1.1" an="color" r:iid="P356.2" r:t="string">white</e>
 <e iid="e.5.1.2" an="price" r:iid="P354.3">
 <e iid="e.5.1.2.1" an="currency" r:iid="P354.3.1" r:t="scalar">USD</e>
 <e iid="e.5.1.2.2" an="unit value" r:iid="P354.3.2" r:t="value"> ? </e>
 <e iid="e.5.1.2.3" an="price unit" r:iid="P354.3.3" r:t="unit">piece</e>
 </e>
 </e>
 <e iid="e.5.2" an="microwave oven" r:iid="P363" r:t="string"/>
 </e>
</bd>

<?xml version='1.0' ?>
<!DOCTYPE bd SYSTEM "bd.dtd">
<bd d:iid="d.2.3.4.5" xmlns:d="http://CU1/docs" xmlns:r="http://CU1/resources">
 <e iid="e.1" an="buyer's name" r:iid="buyer.2.3" r:t="string">Collins</e>
 <e iid="e.2" an="buyer's address" r:iid="buyer.2.3.2" r:t="string">New York</e>
 <e iid="e.5" an="product list" r:iid="resource.4.5" r:t="set">
 <e iid="e.5.1" an="domestic refrigerator" r:iid="p.52.14.15.1">
 <e iid="e.5.1.1" an="color" r:iid="p.52.14.15.1.2" r:t="string">white</e>
 <e iid="e.5.1.2" an="price" r:iid="p.52.14.15.1.3">
 <e iid="e.5.1.2.1" an="currency" r:iid="p.52.14.15.1.3.1" r:t="scalar">USD</e>
 <e iid="e.5.1.2.2" an="unit value" r:iid="p.52.14.15.1.3.2" r:t="value">?</e>
 <e iid="e.5.1.2.3" an="price unit" r:iid="p.52.14.15.1.3.3" r:t="unit">piece</e>
 </e>
 </e>
 <e iid="e.5.2" an="microwave oven" r:iid="p.52.14.15.2" r:t="string"/>
 </e>
</bd>

<?xml version='1.0' ?>
<!DOCTYPE bd SYSTEM "bd.dtd">
<bd d:iid="d.2.3.4.5" xmlns:d="http://CU2/docs" xmlns:r="http://CU2/resources">
 <e iid="e.1" an="-.3=>" r:iid="buyer.2.3" r:t="string">?@AB</e>
 <e iid="e.2" an="-.345" r:iid="buyer.2.3.2" r:t="string">CD</e>
 <e iid="e.5" an="E-F67/" r:iid="resource.4.5" r:t="set">
 <e iid="e.5.1" an="GH!"#I r:iid="p.52.14.15.1">
 <e iid="e.5.1.1" an="JK" r:iid="p.52.14.15.1.2" r:t="string">LK</e>
 <e iid="e.5.1.2" an=".M" r:iid="p.52.14.15.1.3">
 <e iid="e.5.1.2.1" an="NO" r:iid="p.52.14.15.1.3.1" r:t="scalar">PQ</e>
 <e iid="e.5.1.2.2" an="/." r:iid="p.52.14.15.1.3.2" r:t="value">?</e>
 <e iid="e.5.1.2.3" an=".M/R" r:iid="p.52.14.15.1.3.3" r:t="unit">S</e>
 </e>
 </e>
 <e iid="e.5.2" an="GHTUV" r:iid="p.52.14.15.2" r:t="string"/>
 </e>
</bd>

<?xml version='1.0' ?>
<!DOCTYPE bd SYSTEM "bd.dtd">
<bd d:iid="XJD" xmlns:d="http://LU2/docs" xmlns:r="http://LU2/resources">
 <e iid="e.1" an="23" r:iid="MF" r:t="string">?@AB</e>
 <e iid="e.2" an="2345" r:iid="MFDZ" r:t="string">CD</e>
 <e iid="e.5" an="F6" r:iid="SP" r:t="set">
 <e iid="e.5.1" an=""#" r:iid="SP686">
 <e iid="e.5.1.1" an="JK" r:iid="SP686.1" r:t="string">LK</e>
 <e iid="e.5.1.2" an=".M" r:iid="SP686.2">
 <e iid="e.5.1.2.1" an="NO" r:iid="SP686.2.1" r:t="scalar">PQ</e>
 <e iid="e.5.1.2.2" an="/." r:iid="SP686.2.2" r:t="value">?</e>
 <e iid="e.5.1.2.3" an="/R" r:iid="SP686.2.3" r:t="unit">W</e>
 </e>
 </e>
 <e iid="e.5.2" an="TUV" r:iid="SP710" r:t="string"/>
 </e>
</bd>

LCTE

CCTE

LCTE

Fig. 5: Example of Automatic Document Exchange
Fig. 5 shows that an English RFQ in LU1 is automatically trans-
formed into a Chinese RFQ in LU2. The transformation experi-
ences LU1!CU1!CU2!LU2, where transformation engines
LCTE and CCTE transform heterogeneous identifiers IID based
on the CCP documents stored in CUs.

6. COMPARISON TO RELATED WORKS
In this section, some related works in semantic consistency main-
tenance for exchanging multiple inter-enterprise business docu-
ments will be compared, with special regard to their capability in
achieving inter-enterprise interoperability in a distributed and
autonomous environment.
The CODEX approach is based on the CONEX project [3], which
proposed a collaborative concept exchange approach, focusing on
maintaining semantic consistency between ad hoc product data
through a set of collaboration procedures. The CODEX approach
has inherited its collaboration thought but focuses on resolving
semantic consistency issue in business document integration do-
main through formal modeling and one-way buffer mechanism
besides locking. Special considerations of CODEX Framework
are how an inter-enterprise business document can be represented
in a set of classified document element identifiers, how existing
classified vocabularies can be directly used, and how document

435

collaboration relationship can be represented to allow CODEX
system implementation.
The CODEX approach differs from other related works. First,
EDIFACT [31] is a single document standard, which is modeled
and promoted for users to adopt in designing their documents.
Technically, for EDIFACT, the semantic consistency maintenance
between inter-enterprise business documents is limited to the trad-
ing partners that have used the same business document modeling
standard. Outside of these trading partners, business document
interoperation is not possible. More importantly, all semantic
document term/concepts are the standard abbreviated types (i.e.
alphabetic words), which have no clues to classify them for easily
conceptualizing a business document template though EDIFACT
provides annotations for each type. These types (e.g. UNB, UNH
and BGM in D93A Quotes of EDI) are rigidly written and cannot
be changed. The CODEX approach introduces well-designed IID
on concept tree [10] to substitute standard abbreviated types,
which has a clear hierarchical structure associated with corre-
sponding annotations for web view during collaborative document
element design. This overcomes the shortcoming of proprietary
properties of EDIFACT and makes CODEX open and evolvable
for ongoing collaborative editing of a given business document.
Second, Dublin Core [22][15] is a metadata standard that de-
scribes Web resources as document-alike objects. The primary
purpose of Dublin Core is to enable Web resource discovery and
thus aims to be a simple metadata standard for allowing uncon-
strained multiple views of metadata design on the same resources.
While the metadata structure without the nesting ability limits
Dublin Core to describe complex business documents, the uncon-
strained multiple view design limits Dublin Core to being only
effectively workable in the resource discovery scope. This is be-
cause different view designs often have some understanding gap
to a given resource if no solution is given to resolving the incon-
sistent semantics from multiple views. The CODEX approach
focuses on the exchange of semantic consistent business docu-
ment. It not only keeps simplicity of document element structure
but also provides the nesting ability of document elements
through the explicit IID structure of concept tree. It resolves the
semantic consistency issue through collaboration engines, where
collaborative designers can not only maintain their local views but
also maintain semantic consistency between multiple views. Simi-
lar to Dublin Core, RDF (Resource Description Framework) or
later OWL (Ontology Web Language), both standardized by W3C
(www.w3.org) lacks the mechanism to avoid the semantic incon-
sistency when multiple design views are allowed from the distrib-
uted and autonomous design communities.
Third, UDEF [30] is a document element mapping standard that
provides a set of document elements with mapping ability for
integrating several standards. For example, UDEF has the mecha-
nism to map the other document standards such as STEP [27] and
X12/EDIFACT [33]. The mappable document elements are those
synonymous elements such as “part no” in legacy PDM, “product
part identifier” in EIA-836, “product/service ID” in X12 EDI and
“part number” in STEP AP 203. The merit of UDEF is that it has
applied an alphanumeric naming convention defined in ISO 11179
[13] to build document element hierarchy. This enables document
elements to be used in a hierarchical way, which resembles the
concept tree used in CODEX. Nevertheless, the hierarchical iden-
tifiers developed in UDEF are rather ad hoc and are not on a theo-
retical taxonomy base. This limits the UDEF’s ability in develop-
ing a more evolvable and flexible document integration solution.

CODEX IID not only allows the elements of one document to be
run-time classified in an IID concept tree but also enables its an-
notations to be referenced to many lower level IID-ed vocabular-
ies. This adds the reusability of CODEX vocabularies and leaves
the possibility for plugging-in other existing business vocabularies
on markets.
Fourth, using existing ontology to map existing document ele-
ments is another approach to achieving document interoperability
[21]. In this approach, meta-ontology is used to map onto the syn-
onymous document elements from multiple parties with condi-
tions of concept equivalence in different contexts or homonyms in
same context. The issue of this approach is that the mapping be-
tween meta-ontology and local document elements is static, which
cannot cope with the changing requirements of meta-ontology. In
CODEX approach, the common concept IID can be compared to
the meta-ontology, which maps onto the local concept IID. The
key difference is that the formation of common concept IID is a
collaboration result, which permits collaborative parties to keep
their language different concept definitions but maintain semantic
consistency. Second, common concept IID is allowed to change
through one-way buffer mechanism. The mapping of local con-
cepts and common concepts is also a collaboration result, which
constantly tracking the changes of common document element
concepts that may affect the local document element concepts.
Thus, the CODEX approach is a flexible, evolvable and accurate
approach.

7. CONCLUSION
In this paper, we have addressed the issue of semantic consistency
in inter-enterprise business document exchange with the CODEX
approach. This approach has first been discussed in a novel 4-
layer framework including layers, from bottom to top, of commu-
nication, document structure, semantics collaboration and auto-
matic exchange. The communication layer is responsible for
document message transport. The document structure layer is to
provide document structure, which includes two structure models
of business document structure model and collaboration document
structure model. The semantics collaboration layer is to conceptu-
alize the general document structure into semantic documents by
both P2P and D2F collaboration. The collaboration relationship
and the collaboration results are constrained in two XML specifi-
cations of XML Business Document (XBD) and XML Collabora-
tion Documents (XCD). The top automatic exchange layer is a
user layer responsible for automatically and routinely exchanging
XBD business documents, without noticing the lower layers for
document integration.
The CODEX approach to semantic consistency maintenance be-
tween inter-enterprise documents applies the thought of collabora-
tion to design specific method for maintaining semantic consis-
tency in business document template creation. This is an impor-
tant contribution because it has eliminated the semantic consis-
tency issue that metadata approaches cannot solve when they in-
volve multiple view designs. Another contribution of CODEX
approach is its document structure models based on the layered
design thought. These models enable heterogeneous document
concepts autonomously created but be uniquely identified and
aligned through collaborative concept mapping structures. They
resolve the flexibility issue of document standard approaches,
where identifiers of document elements are rigidly predefined.
A limitation of CODEX approach is that, like almost all other
integration approaches, its ability of integrating non-mappable

436

document elements of legacy documents is limited to providing
the intersected concept similarity. Nevertheless, as a growing
system, CODEX has excellent interoperability.
CODEX approach presented in this paper is still evolving. More
stringent implementation level evaluation of this approach is re-
quired based on the future implementation of collaborative en-
gines and transformation engines. Additional theoretical re-
searches on business document resource classification, web busi-
ness resource access, and context-based value translation for Mul-
tilanguage are needed to tackle the implementation level issues.

8. ACKNOWLEDGEMENTS
The work reported in this paper has been partially supported by
University of Macau Research Grand.

9. REFERENCES
[1] Barthes, R., Mythologies, Hill and Wang, English version 1972.
[2] BizTalk, http://www.BizTalk.org.
[3] CONEX, http://www.cit.gu.edu.au/~jzguo
[4] cXML, http://www.cxml.org.
[5] ebXML, http://www.ebxml.org.
[6] ecl@ss, http://www.ecl@ss.de.
[7] Fensel, D., Ding, Y., Omelayenko, B., Schulten, E., Botquin, G.,

Brown, M. and A. Flett, “Product Data Integration in B2B E-
Commerce”, IEEE Intelligent Systems, July/August 2001, 54-59.

[8] Gudgin, M., Hadley, M., Mendelsohn, N., Morear, J. and H.
Nielsen, “SOAP Version 1.2 Part 1: Messaging Framework”,
W3C Recommendation 24 June 2003, http://www.w3.org/TR/
2003/REC-soap12-part1-20030624.

[9] Guo, J. and C. Sun, “Context Representation of Product Data”,
ACM SIGEcom Ex-changes, Vol. 4, No. 1, 2003, pp. 20-28.

[10] Guo, J. and C. Sun, “Context Representation, Transformation
and Comparison for Ad Hoc Product Data Exchange”, in: Do-
cEng’03: Proc. of the 2003 ACM Symposium on Document En-
gineering, ACM Press, 2003, pp. 121-130.

[11] Guo, J., Sun, C. and D. Chen, “Transforming heterogeneous
Product Concepts through Mapping Structure”, in: Proc. of the
2004 Int’l Conf. on Cyberworlds (CW 2004), IEEE Computer
Society Press, Tokyo, Japan, November 18-20, 2004, pp. 22-29.

[12] Guo, J., Sun, C. and D. Chen, “Articulating Autonomously Dis-
tributed Electronic Product Catalogues for Constructing Dy-
namic CONEX Net”, in: Proc. of IEEE Int’l Conf. on E-
Commerce Technology for Dynamic E-Business, IEEE Com-
puter Society Press, 2004, pp. 118-121.

[13] ISO 11179, http://metadata-standards.org/11179/.
[14] Keller, A. M., “Multivendor Catalogues: Smart Catalogues and

Virtual Catalogues”, EDI Forum: Journal of Electronic Com-
merce 9(3), 1996, pp. 87-93.

[15] Lagoze, C., “Keeping Dublin Core Simple: Cross-Domain Dis-
covery or Resource Description?”, D-Lib Magazine 7(1), 2001.

[16] Landry, P., “Multilingual Subject Access: The Linking Ap-
proach of MACS”, Cataloging i Classification Quarterly, Vol.
37, No. 3/4, Haworth Information Press, 2004, pp. 177-191.

[17] Medjahed, B., Benetallah, B., Bouguettaya, A., Ngu, A. and A.
Elmagarmid, “Business-to-business Interactions: Issues and
Enabling Technologies”, The VLDB Journal, 12, 2003, pp.59-85.

[18] Morschheuser, S. and H. Raufer, “Integrated Document and
Workflow Management Applied to the Offering Processing of a
Machine Tool Company”, in: Proceedings of COOCS, Milpitas,
CA, USA, 1995, ACM Press, pp.106-115.

[19] Obrst, L., Wray, R. and L. Howard, “Ontological Engineering
for B2B E-Commerce”, in: Proceedings of ACM FOIS’01,
Ogunquit, Maine, USA, October 17-19, 2001, pp. 117-126.

[20] Omelayenko, B., “Integrating Vocabularies: Discovering and
Representing Vocabu-lary Maps”, in: Proc. of The Semantic
Web – ISWC 2002, Horrocks and J. Hendler (Eds), LNCS 2342,
Springer-Verlag Berlin Heidelberg, 2002, pp. 206-220.

[21] Omelayenko, B., Fensel, D. and Bussler, C., “Mapping Technol-
ogy for Enterprise Integration”, in: Proc. of the 15th Int’l FLAIRS
Conference, Pensacola, FL, USA, 2002, pp. 419-424.

[22] Powell, A., Nilsson, M., Naeve, A. and P. Johnston, “DCMI
Abstract Model”, Dublin Core Metadata Initiatives,
http://dublincore.org/documents/2005/03/07/abstract-model/.

[23] Robinson, M. and L. Bannon, “Questioning Representations”, in:
Proceedings of ECSCW’91, Amsterdam, 1991, pp. 219-233.

[24] Rogoski, R., “Knowledge workers top company assets”, Trian-
gle Business Journal, 14 (19), January 8, 1999, p 21.

[25] RosettaNet, http://www.rosettanet.org.
[26] Saussure, F., Course in General Linguistics, McGraw-Hill Book

Company, 1966.
[27] STEP, http://www.steptools.com/library/standard/.
[28] Shen, H. and C. Sun, “Flexible Notification for Collaborative

Systems”, in: Proc. of CSCW’02, ACM Press, 2002, pp. 77-86.
[29] Sun, C., Jia, X., Zhang, Y., Yang, Y. and D. Chen, “Achieving

Convergence, Causality, Preservation, and Intention Preservation
in Real-Time Cooperation Editing Systems”, ACM Transactions
on Computer-Human Interaction 6(1), 1998, pp. 63-108.

[30] UDEF, http://www.udef.org.
[31] United Nations “EDI for Administration, Commerce, and Trans-

port (EDIFACT)”, 1987, http://www.unece.org/trade/untdid/
welcome.htm, accessed 15 April 2003.

[32] UNSPSC, http://www.unspsc.org.
[33] X12, “EDI (Electronic Data Interchange) ANSI X12”,

http://www.x12.org.

437

