
The Computational Group Concepts in Business Document Exchange

Jingzhi Guo and Xin Guan
Department of Computer and Information Science, University of Macau

Av. Padre Tomás, Pereira, S.J., Taipa, Macau, Tel: +853-397 4890
E-mail:{jzguo, ma46601}@umac.mo

Abstract

Computational group concepts (e.g. Total = Quantity
× Unit Price) in business document exchange are very
important concepts. However, semantic consistency issue
exists in document exchange such that how the
computational relationship in a computational group
concept can be represented, conceptualized, reified and
interpreted between heterogeneous business document
contexts. This paper has discussed this issue and
proposed a public operation concept strategy as the
solution to representing, designing and implementing the
computational group concepts.

1. Introduction
In the business document exchange, there is a

computational group concept that is often not well
understood. What is a computational group concept?
Simply, it could be a sum of product value or a formula
concept value that cannot be separately discussed. For
instance, given a “price” concept that is exchanging, how
should its member concepts of currency, value and unit
be processed such that the currency or unit change will be
reflected in the change of the amount of value?

Indeed, in the real world of business exchange, the
computational group concept is complex. First, when a
firm creates a business document template, some concepts
have to be grouped and their computational relationships
have to be explicitly represented. For example, a blank
invoice has a “total amount”, which possibly represents
the sum of the sub-totals of all involved product value.
Second, given that we have built the “total amount” group
and represented the computational relationships between
its group members in a document template, how should
the group concept “total amount” be reified at sender’s
side when instance data are provided? Third, when a real
invoice is sent to the business partner, how could the
recipient interpret the received invoice and regenerate it
in a semantically consistent way using the recipient’s
local invoice template?

Granted the above complexity, we are motivated to
investigate the details of computational group concepts
for the phases of business document representation and
exchange.

It is noticed that the autonomy of business document
exchange has an important effect on how to handle
computational group concept. For example, if the senders
and receivers of the business documents are sitting in a
same context and using the same document application,
the operations on the group concepts may possibly be
designed and implemented in a same library attached to
the document application. This is similar to the standard
XML schema implementations [2], where default
functions such as “ID”, “DATE”, “TIME”, etc. are
included in the schema implementation. For a single user
application like Microsoft Excel, locally available
operations are well sufficient. However, when senders
and receivers are in different contexts and are
autonomous, i.e. they have different document templates
and reification methods, a single “one-fit-all” operation
library is often not feasible.

In this paper, we assume that senders and receivers of
the business documents are in different business contexts.
The heterogeneity assumption poses a great challenge to
handle computational group concepts, where operations
on group concepts cannot be designed and implemented
in a single document application due to the heterogeneous
nature of involved business documents.

This paper aims to propose a strategic solution, called
Public Operation Concept (POC), to the issue of handling
computational group concepts between heterogeneous
business documents of distributed contexts.

In the following, Section 2 provides examples to
introduce problems. Section 3 proposes the strategies for
problem solving. Section 4 discusses the business model
implied in the strategy. Section 5 details the design
process of computational group concepts. Section 6
implements the POC approach. Section 7 discusses and
concludes the paper with the highlight of contributions.

2. Examples, Problems and Analysis
To introduce the problem we are concerning, we first

present two real invoices shown in Fig. 1 in English (say
Inv1) and Fig. 2 in Chinese (say Inv2), which both are
electronically stored but printed out in different
presentation styles. We suppose that our task is to build a
global invoice exchange system between distributed and
heterogeneous business document contexts disregarding

IEEE International Conference on e-Business Engineering

0-7695-3003-6/07 $25.00 © 2007 IEEE
DOI 10.1109/ICEBE.2007.15

268

IEEE International Conference on e-Business Engineering

0-7695-3003-6/07 $25.00 © 2007 IEEE
DOI 10.1109/ICEBE.2007.15

268

IEEE International Conference on e-Business Engineering

0-7695-3003-6/07 $25.00 © 2007 IEEE
DOI 10.1109/ICEBE.2007.15

268

their natural languages used, presentation style formats,
and data extraction purposes.

Fig. 1: Electronic Invoice Sample in English

Fig. 2: Electronic Invoice Sample in Chinese

2.1. Computational Group Concepts in Examples
There are several computational group concepts in Fig.

1 and Fig. 2, for example, “payment detail”, “(Product)
Total or 金额 ”, “SubTotal”, “Taxes or ”, “Total or

” and so on. In this paper, as an investigation
illustration, we are interested in this type of computable
group concepts. These concepts can often be represented
by a computational formula, for example, “(Product)
Total” = Qty × UnitPrice for all Description,, SubTotal =
Sum(“(Product) Total”) and Total = SubTotal + Shipping
and Handling + Taxes.

税额

总额

2.2. Problems
Through comparing Fig. 1 (Inv1) and Fig. 2 (Inv2),

several problems can be identified:
(1) Inv1 and Inv2 have different computational group

concepts, while they are the same in “(All Product)
Total” = 金额 and SubTotal = ()金额 , the
other group concepts are different.

货物

(2) In Inv1, Taxes = GST rate × 7.3% while in Inv2
Taxes () = VAT rate × 17%. They have
different tax categories and so the “Taxes” means
differently.

税额

(3) Inv1 has Shipping & handling while Inv2 does not
include this item.

(4) Inv1 has Total = SubTotal + Shipping & Handling
+ Taxes while Inv2 has Total () = (All

Product) Total (金额) + 税额 . These two group
concepts are different.

价税合计

By summarizing the above four problem phenomena,
we can generalize a significant issue, that is, group
concepts in heterogeneous document contexts have
inconsistent group concept composition problem such
that they may be homonyms or synonyms, have different
formulas or may be orphan concepts only appeared in
either senders or receivers. This issue leads to
impossibility for business document exchange with
correct interpretation between senders and receivers.

2.3. Analyses
Given the fact that Inv1 and Inv2 are generated in two

different business contexts that are in different natural
language environments and heterogeneous invoice
applications, there are two possible solutions to resolve
the inconsistent group concept composition problem.
(1) Set a mandatory rule that all invoice users apply

the same invoice application with the same invoice
format, semantic terms (including group concepts)
and computational formula [1, 3].

(2) Build a mapping mechanism such that for all
semantic terms used in Inv1, they can be
semantically transformed into a new invoice that
can be understood in the context of Inv2 [4, 8].

It is obvious that solution 1 is inappropriate in our
problem domain because the invoice exchange between
contexts of Inv1 and Inv2 requires a universal invoice
standard and application [5]. It is not possible in reality.
The solution 2 is worth considering. However, if this
solution is adopted, some other problems have to be
resolved:
(1) How to guarantee the group concepts in Inv1 and

Inv2 are semantically consistent such that their
computational relationships are exactly the same as
in Inv1 and Inv2?

269269269

(2) How to guarantee that the recipient of Inv1 in Inv2
context correctly interpret the Inv1 such that the
received value for regeneration can be validated?

In this paper, we adopt solution 2 and attempt our best
effort to solve the above problems.

3. Strategy of Business Document Exchange
We propose a novel business document exchange

strategy, called Public Operation Concept (POC), to
resolve the problems. Our strategy can be described in the
following steps:

Step 1: collaboratively build common vocabularies for
all involved parties, including all possible document
element concepts, such that for each language different
zone i or j, there is a corresponding common vocabulary
cvi or cvj where cvi semantically equals cvj. With this step,
document senders and receivers could have mutually
interoperable semantic knowledge on terms cv used in the
exchanged documents.

Step 2: collaboratively create common document
templates for all involved parties using common
vocabularies cv. With this step, both document senders
and receivers have common document templates that are
semantically interoperable.

Step 3: all possible computational group concepts are
marked and default implementations are given for each
group concept. The default implementation for each
computational group is a common operation, which is
called as a common operation concept that has a unique
operation identifier. All the common operation concepts
are published to a publicly available space with a unique
web address, which is used as their namespace. The
namespaces are used as the entry points to the access of
computational group operations.

Step 4: each involved party creates local document
templates according to the common document templates
to generate their differentiated business documents and to
maintain semantic consistency.

Step 5: for each computational group concept in local
document templates, it can use common operation
concepts or override them. The overridden operation
concepts are called local operation concepts and are
placed in another namespace of the individual party.

Step 6: when a document sender reifies a local
document template, the computational concepts are
reified by the given operation concepts.

 Step 7: For a received business document, the receiver

Common Vocabularies (CV)
(Through collaborative creation)

Common Document
Templates (CD)

(Through collaborative creation)

Common
Operation
Concepts

Local
Operation
Concepts

Common Document Templates

Business Vocabularies

Local Document
Template

Local Document
Template

Reified Document Reified Document

Exchange

Sent Received

Run-time execution of
operation concepts for
receiving reified
business documents

1

2

3

44

7

POC Resource
Repositories

A1 A2

B1 B2

Common Document Template

Common Business Vocabularies

Common Operation Concepts

5Local Operation Concepts

C1
C2

D1
D2

6

Inv1 Inv2

Fig 3: Illustration of Creating and Editing Group Concepts

270270270

re-generates the incoming document according to the
receiver’s local document template and validates the
computational group concept value based on both
operation concepts given by the operation namespaces.

This strategy is based on CONEX (for Step 1) [6] and
CODEX (for Step 2) [7]. Step 3 to step 7 are novel, which
has introduced a public operation concept (POC)
approach to retrieve the common operation concepts and
local operation concepts through using namespaces for
positioning the implementation of the operation concepts
and their run-time executions.

To have a better understanding of this strategy, Fig. 3
provides a graphical illustration of the strategy. In the
figure, our task is that D1 sends a reified business
document (say Inv1, see our example in [A7]) to D2
where D2 can fully understand in its own context (say the
context of Inv2 with the different group concepts and
natural language from Inv1 – see our example in [A8]).
To fulfill this task, Fig. 3 divides related people in four
categories: common vocabulary (CV) designers (CVD),
common document (CD) designers (CDD), local
document (LD) designers (LDD), and reified document
(RD) users (RDU). With this classification, we have:
• CVD = (A1, A2), a P2P collaborative community [7]

responsible for collaborative creation and editing
common business vocabularies CV that can be used in
all types of languages with semantic consensus (see
our examples in [A1, A2]).

• CDD = (B1, B2), a P2P collaborative community [7]
responsible for collaborative creation and editing
common business document templates (i.e. blank
documents) CD that can be used for heterogeneous
business contexts but with semantic consensus (see our
examples in [A3, A4]).

• LDD = (C1 | C2), any local document designer, which
collaborates with CDD to form a D2F (dominant-to-
follower) collaboration community [7] such that a D2F
collaboration organization = (B1, C1) or (B2, C2). The
result of D2F collaboration is that C1 or C2 has
personalized the common document templates into
local document templates LD that fit for its own
business context (see our examples in [A5, A6]).

• RDU = (D1 | D2), any reified document user. It (e.g.
D1) reifies local document templates by filling real
concept values into reified document RD and sends
them to other one (e.g. D2) for use (see our examples
in [A7, A8]).
With this strategy, we wish to obtain the clear

consistent semantic relationships between CV, CD, LD
and RD without semantic discrepancies between CVD,
CDD, LDD and RDU such that:
(1) ∀ec ∈ CD, ec ∈ cv ∈ CV such that cvi =sem cvj.

That is, for all document element concepts ec used
in one common document template cd, they must
come from one of common vocabularies cv

belonging to CV, where any cvi semantically
equals any cvj.

(2) ∀ld ∈ LD, ld ⊆ cd ∈ CD. That is, any local
document ld is a partial common document cd in
its natural language scope.

(3) ∀groupConcept ∈ ld, groupOperation ∈
Namespace. That is, for any group concept in a
local document template ld, its corresponding
group concept operation groupOperation must be
implemented to stipulate the computational
relationships between the underlying grouped
concepts, and its implementation must be
accessible as a public operation through a
namespace.

(4) ∀groupConcept ∈ rd←ld, groupOperation
(groupConcept) ∈ namespace ∈ ld. That is, in the
reification of local document ld to a reified
document rd, any groupConcept be computed
according to the predefined groupOperation in ld.
Also, when receiving a reified document, the
recipient must interpret the groupConcept
according to the predefined groupOperation
following the given namespace that implements
groupOperation.

It is clear that if we can maintain the above
relationships, we can guarantee that a sent reified
business document can be safely received by a recipient
in a semantically consistent way. It should be noted that
this strategy does not guarantee that a received reified
business document can be immediately interoperable with
the recipient’s standalone business system because a fully
interoperable reified business document implies the
following condition: both the sender and receiver has the
exactly same document elements, concept grouping and
underlying group concept computational behaviors. This
requires a reconstruction process on the received reified
business document. This reconstruction is beyond the
discussion of this paper and should be investigated
elsewhere, for example, legacy systems integration.

4. Business Model Implied
The POC strategy for handling computational group

concepts in exchanging business documents between
distributed and heterogeneous business contexts implies
an important business model, which can be described in
the following.
• Three independent profit entities are identified, which

are common business vocabulary designers (CVD).
Given that all CVD are firms, they can organize a
profitable P2P community specializing in designing
common business vocabularies (CV) (see our CV
examples in [A1, A2]) and allocate the revenues based
on their contributions. The purchasers of the CV are
the common document designers (CDD).

271271271

• Given all business document designers (CDD) are
firms, they can form a profitable P2P community
specializing in designing common business documents
(CD) and common operation concepts (see our CD
examples in [A3, A4]). What they have earned can be
allocated according to their contributions. The
purchasers of CD and operation concepts are local
document designers.

• Local document designers (LDD) and reified document
users (RDU) combined together are also firms, which
actually exchange business documents. They first
purchase the CD and operation concepts and then reify
them for doing e-business (see our LD and RD
examples in [A5, A6, A7, A8]).
This labor division and specialization implies a fully

new collaborative business model, which will enable to
vertically integrate existing industries and horizontally
integrate heterogeneous e-business systems. In this
model, the concept of public operations is integrated into
the business interoperability activities with the perception
of collaboration.

5. Computational Group Concept Design
Assuming that the POC strategy can work in the above

mentioned collaborative business model, how could a
computational group concept be particularly designed
through a public operation concept? In this section, we
will describe the POC approach to the design:
(1) In the stage of common document design, each

common group concept or “cgc” in a common
document (CD) is selected from common
vocabulary (CV) and designed in a collaborative
way for reaching common consensus. Each group
concept has a common operation concept
commonGroupOperation or “cgo”, for example,
cgo:oid=“Oid5_1_5”.

(2) In the stage of local document design, each local
group concept or “lgc” in local documents (LD) is
localized from corresponding common document
(CD) and its “cgo” maybe personalized as local
group operation localGroupOperation or “lgo”, for
example, lgo:oid = “O1234”.

(3) In the stage of local document reification and
exchange, all computational group concepts must
be reified into concept values according to the
computation of “cgo” and/or “lgo”. The key is the
requirement for consuming the public operations of
the referenced “cgo” and/or “lgo” defined by
namespaces, for example, xmlns:cgo=“http://
www.conex.em2i.org/papers/grpcpt/cgo.php”.

Given the above stage-wise design, we provide the
particular technical design of public operation concept.

5.1. Representation
Given a set of concepts C1 , …, Cn of a common

vocabulary VC such that they belong to a computational
group concept Ck ∈ VC in a business document BD, then
we have:

Ck =
C[iid, an, rid = “iidck” ct = “group”,
cgo:oid | lgo:oid = “OID”](
C [iid1 1, ct = “atomicType”]{val1}
…,
Cn[iidn, ct = “atomicType”]{Valn}

){Valc}

In this representation, the group concept Ck→C has a
set of concept attributes iid (group concept identifier), an
(annotation of the group concept), rid (reference concept
identifier iidck that equals to the one that Ck is identified in
VC), ct (concept type and here as “group”), cgo:oid or
lgo:oid (where cgo/lgo is the namespace of common/local
group operation concepts and OID is the unique operation
concept identifier/name in the namespace that introduces
an operation), and a set of lower level concepts C1 , …,
Cn belong to this group where each of C1, …, Cn here at
least has a concept identifier iid1, …, iidn, a concept type
ct to indicate whether the lower level concept is an atomic
type concept or not a group concept, and a concept value
Val1, …, Valn.

The operation OID implements the computational
relationships between concepts C1 , …, Cn belonging to
the group concept Ck, such that:

OID(in iid[n], in Val[n], out iid[n], out Val[n])

where the input is an array of concept identifier iid and a
corresponding array of concept values Val of C1 , …, Cn
and the output is the computational result array of the (iid,
Val) pairs.

5.2. Design
Given the above group concept representation,

document templates can be collaboratively designed into
different languages, e.g. XML * . The collaborative
document design is, in fact, a process of collaborative
document editing, which relies on collaborative editors –
P2P editor for common document editing and D2F editor
for local document editing. This paper will not discuss the
design of P2P and D2F collaborative editors, as it is
beyond the paper scope.

The group operation concepts cgo:oid or lgo:oid can
be implemented in different server-based script languages
such as ASP, JSP, PHP or Perl with their Web addresses
as the namespaces for cgo and lgo such that each

* Please be noted that since the operation of a computational group
concept is only marked as a symbol in XML document and is
implemented in a publicly accessible location through XML namespace,
the richness of XML expressiveness problem has no effect on the POC
strategy.

272272272

cgo:OID or lgo:OID triggers a group operation OID
implemented in the server page. This design implements
operation concepts in publicly available Web spaces and
can be independently maintained and used without
affecting the design and use of document templates and
reifications.

5.3. Reification
Reification of a computational group concept refers to

a procedure that a computational group concept consists
of several related inner concepts that are given values
through computation. For example, given a computational
group concept:

Total[iid = “1234”, rid = “1.2.3.4.5” an = “sum of
tax and shipping expenses”, ct = “Group”, lgo:oid
= “O1234”] (tax[iid=“1234.1”,
ct=“atomicGroup”] {Val=“120”},
shippingExpense[iid=“1234.2”, ct =
“atomicGroup”]{Val = “560”}){Val = “?”}.

Then:

Val(Total) = O1234([in] iid[1], [in] Val[1], [out]
iid[0], [out] Val[0]) = 680.

More generally, the reification procedure of group
concept can be written in the following:

(1)Given a document template:

ec [iid , ct=nonGroup](1 1

ec [iid , ct=group, lgo:oid=O11]{Val1.1 1.1 1.1}(
ec1.1.1[iid1.1.1, ct=atomicGroup,

lgo:oid=O111]{Val }, 1.1.1

ec1.1.m[iid1.1.m, ct=atomicGroup,
lgo:oid=O11m]{Val1.1.m}

),
ec1.m[iid1.m, ct=atomicGroup,

lgo:oid=O1m]{Val }, 1.m

ec1.m+1[iid1.m+1, ct = nonGroup],
ec1.m+n[iid1.m+n, ct = nonGroup])

(2) Reify the most inner level group concepts
marked by “atomicGroup” (The nonGroup concepts
are neglected) such that:

//Calculate the value of a group concept
For all siblings{
if ec1...i has ct=atomicGroup or ct=Group,
iid[i-1]=iid1...i and Val[i-1]=Val1...i;

};
Val(ec1...i-1)=OID1...i([in]iid[i-1], [in]Val[i-
1], [out]Val[0]);

Repeat;

(3) Calculate outer level group concepts in a
recursive way as (2).

Fig. 4: Group Concept Reification

Group concept reification provides an automatic
computational result for all group concepts within a
business document at sender’s side.

5.4. Interpretation
When a business document is sent to a recipient, the

procedure of group concept interpretation begins. Such
interpretation is a re-computation of the received group
concepts in a heterogeneous business context, and thus
needing to understand how the sender reifies the group
concepts for the sent document. The POC approach
interprets the received document in the following way:
Step 1: Replacing all document elements of sender’s
document by the corresponding document elements
understood by the recipient.
Step 2: Translate the document element values of sender’s
document, where atomic constant values, atomic unit
value, atomic scalar value and atomic value are translated
into the recipient’s required contextual values.
Step 3: Validate the computational group concept values,
where these values are recomputed according to the group
operations.

In this interpretation process, the three steps of group
concept re-computation guarantees: (1) heterogeneous
document elements are translated conforming to the
recipient’s document context; (2) unit and scalar values
are localized; (3) all computational values of atomic
document element values and computational group
concept values are re-computed and validated against the
given atomic concept operations and group concept
operations. This process can be diagrammed in Fig. 5.

Fig. 5: Group Concept Interpretation

Related to Fig. 3, assuming the sender’s document is

the Inv1 of D1 and the expected interpreted document is
the Inv2 of D2, then the above process will be:

Step 1: For all document elements ec1 ∈ Inv1 and ec2

∈ Inv2, then . 1 2
 translate toec ec⎯⎯⎯⎯→

Step 2: For all document element ec1 ∈ Inv1 have their
corresponding element values ev1 in the context ctx1 such
that ec1→ev1(ctx1) and ec2 ∈ Inv2 have their context ctx2,

then where ec1 1 2 2
 () (translate toev ctx ev ctx⎯⎯⎯⎯→) 2→ev2.

Step 3: For all group concepts gc2 ∈ ec2g ⊆ ec2 with
corresponding operation concepts go2, then the group
concept value gv2 of gc2 is validated by go2 such that gv2
= go2(ev2g) where ev2g is the group concept value of ec2g.

273273273

6. System Implementation
Computational group concepts are implemented

following XML Business Document developed in [7].
The difference is that the operation concepts are added to
support the computational group concept design,
reification and interpretation.

Fig. 6: System Architecture of POC Approach

Particular implementation steps are given in the

following:
(1) Common concept editor (Coceptor) collaboratively

designs common vocabularies in different natural
languages in XML format, where common group
concepts are designed.

(2) Common document editor (Codocor)
collaboratively designs common document
templates in different natural languages in XML
format, where unique identifiers of common
operation concepts are designed.

(3) Common public operation library (CoPOLib) is a
library for common operation concepts
implemented in PHP server pages with namespace
like cgo:xmlns=“URL”, where common operations
concepts cgo:OID are implemented in the PHP
server page addressed by URL. So all operations
are publicly accessible through namespace.

(4) Local document editor (Lodocor) designs local
document templates in a particular natural
language. Additionally, local public operation

library (LoPOLib) is implemented for local
operation concepts by overriding common
operation concepts if they are not suitable.

(5) Reified document editor (Redocor) reifies XML
documents so that the reified business documents
can be created.

(6) Reified document interpreter (Redocin) interprets
reified XML document so that the received reified
business documents can be interpreted.

The above step-wise implementation of computational
group concepts is described in Fig. 6, which is the system
architecture of POC approach.

To illustrate how POC components work together to
exchange reified documents, consider the sample scenario
of sending Inv1 of D1 to D2 as shown in Fig.3. Suppose
the understandable contexts of Inv1 and Inv2 are the
following tables:

Coceptor Coceptor

English
Vocabulary

Chinese

Vocabulary

Codocor Codocor

English
Common
Document
Templates

Chinese
Common
Document
Templates

CoPOLib

LoPOLib

English
Local

Document
Templates

Chinese
Local

Document
Templates

Lodocor Lodocor

Reified

Document

Interpreted
Document

Redocor Redocin

Table 1: Context of Inv1 (abstracted from Fig. 1)
Invoice(
Issuing Date;
Invoice Number;
Issuer(Address);
Customer(Address);
Items(
 Qty; Description; Unit Price; Total
)
SubTotal;
Shipping & Handling;
Taxes(GST);
Total
)

Table 2: Context of Inv2 (abstracted from Fig. 2)
发票(
开票日期;
发票号;
销货单位(名称; 纳税人识别号; 地址; 电话;
帐户信息
);
购货单位(名称; 纳税人识别号; 地址; 电话;
帐户信息
);
货物及应税劳务清单(
 货物及应税劳务名称;
 规格型号;
 单位;
 数量;
 单价;
 金额;
 税率(增值税率);
)
合计(货物总额; 应税总额);
价税合计
)

With the above invoice contexts and POC architecture,
a reified invoice (say Inv1) generated in the Inv1 context

274274274

is able to be received and correctly interpreted in the Inv2
context if the POC approach is well implemented. To
describe the invoice exchange process, we have
implemented two common vocabularies (an English
vocabulary - see example in [A1]) and a Chinese
vocabulary – see example in [A2]), two common invoice
templates (both in English – see example in [A3] and in
Chinese – see example in [A4]) including a common
public operation concept library, two local invoice
templates (see examples in [A5, A6] that can be
understood by Inv1 context and Inv2 context including
their local public operation libraries.

These implementations make possible for a reified
invoice produced in Inv1 context and transformed into
another reified invoice in Inv2 context such that:

Reified Inv1 ← Local English Invoice
Template ⊆ Common English Invoice
Template =Sem Common Chinese Invoice
Template ⊇ Local Chinese Invoice Template
→ Reified Inv2.

Comparing with the reified Inv1 produced in Inv1
context (see example in [A7]) and the reified Inv1
received and interpreted in Inv2 context (see example in
[A8]), we can see that heterogeneous concepts of invoices
can be freely transformed if they maintain three properties
of semantic consistency model proposed in [6], that is,
structure mappability, semantic equivalence and common
context. Structure mappability is achieved here through
concept identifiers. Semantic equivalence between
invoice templates is guaranteed through collaborative
creation of invoice templates. Common context is
provided through concept editors of Coceptor, Codocor,
Lodocor and Redocor.

Particularly in this paper, the semantics of
computational group concepts are collaboratively
assigned in the stage of vocabulary creation, the
operations of the group concepts are collaboratively
designed in the stage of document template creation.
These have guaranteed that the reification of a document
can be successful in the sender’s context and can be also
successfully received and interpreted in the context of the
receiver.

7. Conclusion
This paper has investigated the computational group

concepts within business documents and their problems in
business document exchange between heterogeneous
business systems. It has found that semantic consistency
between computational group concepts are often
neglected because the existing understanding of them are

to develop computational functions only applicable to the
local applications, not for heterogeneous contexts.

To resolve the above issue, this paper proposed a
novel Public Operation Concept approach, which design
and build computational operations for the computational
group concepts in a publicly available place through
applying the namespace concept. Through this approach,
computational group concept operations are no longer
only tied to the local applications but able to be triggered
and used in remote context of document receivers.

This paper has several contributions: the proposal of
public operation on computational group concepts, the
representation and design of group concepts for business
documents, and the demonstration of XML-based
implementation.

Future work of the POC approach is to enrich the
common operation concept libraries and makes them
available for public use.

Acknowledgement
The work reported in this paper has been partially

supported by University of Macau Research Grand.

References
1. AITF, http://www.iata.org/workgroups/airport-invoice-

standards.htm.
2. Biron, P., Permanente, K. and A. Malhotra, “XML Schema

Part 2: Datatypes Second Edition”, W3C Recommendation
28 October 2004, http://www.w3.org/TR/xmlschema-2/.

3. BQE Software, http://www.bqe.com/.
4. Chung, C. Y., Lieu, R., Liu, J., Luk, A., Mao, J. and P.

Raghavan, “Thematic mapping - from unstructured
documents to taxonomies”, in: Proc. of CIKM’02, ACM
Press, 2002, pp. 608-610.

5. Díaz, L., Wüstner, E. and P. Buxmann, "Inter-organizational
document exchange: facing the conversion problem with
XML", in: Proc. of SAC’02, ACM Press, 2002, pp. 1043-
1047.

6. Guo, J., Integrating Ad Hoc Electronic Product Catalogues
through Collaborative Maintenance of Semantic
Consistency, PhD Thesis, Griffith University, Australia.

7. Guo, J., Inter-enterprise business document exchange, in:
Proc. of ICEC’06, ACM Press, 2006, pp. 427-437.

8. UDEF, http://www.opengroup.org/udef/.

Appendix
A1. http://www.conex.em2i.org/papers/grpcpt/enVoc.xml
A2. http://www.conex.em2i.org/papers/grpcpt/cnVoc.xml
A3. http://www.conex.em2i.org/papers/grpcpt/enCDoc.xml
A4. http://www.conex.em2i.org/papers/grpcpt/cnCDoc.xml
A5. http://www.conex.em2i.org/papers/grpcpt/enLDoc.xml
A6. http://www.conex.em2i.org/papers/grpcpt/cnLDoc.xml
A7. http://www.conex.em2i.org/papers/grpcpt/enRDoc.xml
A8. http://www.conex.em2i.org/papers/grpcpt/cnRDoc.xml

275275275

