
Answering an Inquiry from Heterogeneous Contexts

Jingzhi Guo
1
, Zhuo Hu

1
, Grigoris Antoniou

2
 and Chi-Kit Chan

1

1. Department of Computer and Information Science, University of Macau

Av. Padre Tomás, Pereira, S.J., Taipa, Macau, Tel: +853-397 4890

E-mail: jzguo@umac.mo

2. Computer Science Department, University of Crete, Greece

Institute of Computer Science, FORTH, Greece, Tel: +30 2810 250166

antoniou@ics.forth.gr

Abstract

In this paper we study the semantic consistency

maintenance issue between heterogeneous contexts, that is,

how an inquiry from an unknown user of an e-marketplace

can be received and answered in a semantically consistent
way by a firm that is not in the context of the user’s e-

marketplace. The proposed solution uses XPM to represent

semantically consistent business concepts and adopts

defeasible logic to reason with XPM document-oriented

business rules for inquiring and offering. We motivate the

approach with a real-world apartment rental problem, and

explain it in architecture of collaborative business process

design and automatic service provision. Finally, we report

on an implementation specification within a hybrid human-

agent framework.

1. Introduction
In last decade, the design of e-marketplace has experienced

a rapid transformation from focusing on front-end web

presence of products to emphasizing back-end business

interoperation [10]. In this transformation, technologies like

business standards (e.g. UNSPSC.org), ontology

engineering [5][9] (e.g. OWL [4]) and semantic web [3]

have pushed the development of e-marketplace, where

sellers can search for buyers and buyers can search for

products/sellers to make transaction deals.

In an e-marketplace, a trade process is often a complex

process beyond a single search activity but involves a
sequence of conditional activities of inquiry, offer,

counteroffers, acceptance, and contracting. Contemporary

approaches to building a trade process often introduce

domain-wide business process standards such as BizTalk,

BPML or BEPL that define trade processes using shared

business standards of a single domain of business contexts.

A challenging situation in real world is: not all firms

participating in an e-marketplace adopt a same business

process standard, especially SMEs. This implies an issue of

heterogeneous business process integration: the numerous

business processes of different firms need to be integrated

for business interoperation.

The issue can be illustrated in the following example

where Carlos, a user of e-marketplace (e.g. alibaba.com),

wants to rent an apartment in a city with the requirement

shown in Table 1 through his computer agent (e.g. a client

software like TradeManager of trademanager.alibaba.com)

provided by his participated e-marketplace.

Table 1: Rental Requirements from Carlos

1. Carlos is looking for an apartment of at least 45m
2
 with at least 2

bedrooms. If it is on the 3
rd

 floor or higher, the house must have an
elevator. Also, pet animals must be allowed.

2. Carlos is willing to pay $300 for a centrally located 45m
2
 apartment,

and $250 for a similar flat in the suburbs. In addition, he is willing to

pay an extra $5 per m
2
 for a larger apartment, and $2 per m

2
 for a

garden.

3. He is unable to pay more than $400 in total. If given the choice, he

would go for the cheapest option. His 2
nd

 priority is the presence of a

garden; lowest priority is additional space.

Immediately, Carlos has several problems:

(1) Incomplete solution range. The city that Carlos

wants to rent an apartment has more than 500 real estate

agents that all provide rental services, but Carlos’ agent can

only talk to 50 of them because Carlos’ e-marketplace only
has 50 real estate members. This implies that Carlos has

incomplete solution range among all possibilities (Problem

1).

(2) Insufficient requirement representation. Carlos’ e-

marketplace only supports simple inquiry format (e.g. Fig.

1), i.e. Carlos’ agent can only provide a restricted inquiry

form to Carlos. This form cannot fully represent Carlos’

requirements of Table 1. This implies that Carlos has to

reduce his requirements in order to make an inquiry

through his e-marketplace (Problem 2).

(3) Long processing time. Carlos’ rental inquiry in web

form is posted to 50 real estate agent systems by his e-
marketplace. Only 20 of them can automatically analyze

and process Carlos’ requirement. The others can only read

and process manually because their systems lack web form

analysis ability. This implies longer waiting time for Carlos

(Problem 3).

(4) Inconsistent semantics between e-marketplaces and

their participated systems. The concepts defined by the e-

marketplace in web form may not be understandable by

those systems that have automatic web form processing

abilities. For example, the concepts, shown in Fig. 2

corresponding to the web form of Fig. 1, are not

interpretable by those real estate agent systems if they are

not provided by the e-marketplace. This implies that the

semantic inconsistency of used concepts exists between the
e-marketplace and the real estate agent systems (Problem 4).

Inquiry Sheet for Renting House

Fig. 1: Example inquiry sheet for renting house

<form name=“n” id=“n” method=“get” action=“/cgi-bin/rsearch”>

<input name=“a” id=“a” value=“s” type=“hidden”>

 // What are concepts of “a” and “s”?

<input name=“cu” id=“cu” value=“fn-rea” type=“hidden”>

 // What are concepts of “cu” and “fn-rea”?

<input name=“s” id=“s” value=“qld” type=“hidden”>

 // What are concepts of “s” and “qld”?

<input name=“ss” id=“ss” value=“” type=“hidden”>

……

</form>

Fig. 2: Concepts used in web form of Figure 1

These four problems illustrate that, without a proper
mechanism, Carlos’ inquiry cannot be effectively sent to

the potential offerers for effective processing. These

problems constitute the semantic consistency issue between

heterogeneous business concepts, which may lead to fewer,

wrong or even none of rental offers from the existing real

estate agent systems.

This paper aims to reduce the effect of semantic

consistency issue by proposing a novel approach to
heterogeneous business process integration, where business

concepts in terms of facts and rules used in heterogeneous

processes can be collaboratively designed by concept

designers (i.e. rule makers or knowledge engineers),

automatically transformed by automated agents, and easily

used by business users. This approach regards a business

process as a conditional sequence of automated actions on a

set of business documents collaboratively created, where

business concepts in terms of facts and rules are made. It is

called as Collaborative Document-Oriented Rule Making

(CoDORM) approach.

Due to space limitations, CoDORM approach only

demonstrates how semantic consistency can be maintained

in Carlos’ example by answering the rental inquiry, and
how this inquiry and its reasoned offer can be composed as

a set of instantiated collaborative concepts, which can be

transformed into a set of business rules that logic can

automatically handle. By so, this paper contributes a

designed business inquiry/offer system between the

inquirers and offerers.

The rest of the paper is arranged as follows: Section 2

describes CoDORM approach. Section 3 proposes the

implementation specification. Section 4 discusses some

related work. Finally, a conclusion with a contribution list

and future work are provided.

2. CoDORM Approach
CoDORM applies the technologies for collaborative

conceptualization (please refer to the introduction article1)

and defeasible reasoning (please refer to the introduction

article2) to design the system. It has four design principles:

(1) Flexibility: the systems shall be flexible to add new

participated systems. (2) Semantic consistency: the systems

shall be able to maintain semantic consistency of business

concepts between participated systems. (3) Easiness: the

systems shall be easy to use for participants. (4) Automatic:

the systems shall be automatic to process the incoming

inquiries and generate the outgoing offers.

2.1. CPDASP Model
Collaborative process design and automatic service

provision (CPDASP) is a model of collaborative designing

and using semantically consistent business processes

between business process providers and e-marketplace

participants so that business process users can obtain

desired transaction results. For example, Carlos as a user

can correctly make his rental inquiry based on his rental

requirement in Table 1 to receive his desired rental offer.

A business process is a sequence of conditional actions.

Each action is an action concept, which has an action

sender and an action receiver. The action acts based on an
action logic particular to this action. This action logic acts

on a set of objects, where some objects provide the input

for the action logic and some objects receive the output of

the action logic. These objects are consumed by both action

sender and action receiver. Generic actions can be

diagrammed in Fig. 3.

1 Collaborative Conceptualization,

http://www.sftw.umac.mo/~jzguo/resource/collaborativeConcep

tualization.html.
2 Defeasible Reasoning,

http://www.sftw.umac.mo/~jzguo/resource/defeasibleReasoning
.html.

http://www.sftw.umac.mo/~jzguo/resource/collaborativeConceptualization.html
http://www.sftw.umac.mo/~jzguo/resource/collaborativeConceptualization.html
http://www.sftw.umac.mo/~jzguo/resource/defeasibleReasoning.html
http://www.sftw.umac.mo/~jzguo/resource/defeasibleReasoning.html

Fig. 3: Generic Actions in a Business Process

The CPDASP involves several steps as follows:

(1) Common business process providers (BPP) for e-

marketplaces collaboratively design document-oriented

business processes on a peer-to-peer (P2P) collaboration

network to leverage heterogeneous business contexts, in the

way of collaborative designing (a) common business
vocabularies V(X), (b) common business document

templates D(X) using V(X), and (c) common business

process patterns P(X) using both V(X) and D(X).

(2) E-marketplace facilitators (EMp) localize V(X),

D(X) and P(X) into their own personalized e-marketplace

V’(X), D’(X) and P’(X) to satisfy their own preferences

through a collaborative mapping on a dominator-to-

follower (D2F) [7] collaboration network such that:

 t’  V’(X) and t  V(Y)  V(X)  t’ =sem t;

 d’  D’(X) and d  D(Y)  D(X)  d’ =sem d;

 p’ P’(X) and p  P(Y)  P(X)  p’ =sem p.

The notation “=sem” means semantically equivalent, for
example, “refrigerator” is semantically equivalent to

“fridge” after collaborative agreement.

(3) All firms (e.g. real estate agents) (FIRM) again

localize or directly use the e-marketplace V’(X), D’(X) and

P’(X) as firm-based V’’(X), D’’(X) and P’’(X) to satisfy

their own personalized enterprise information systems

through a collaborative mapping on a dominator-to-

follower (D2F) collaboration network such that:

t’’  V’’(X) and t’  V’(Y)  V’(X)  t’’ =sem t’;

d’’  D’’(X) and d’  D’(Y)  D’(X)  d’’ =sem d’;

p’’ P’’(X) and p’ P’(Y)  P’(X)  p’’ =sem p’.

(4) Each participated e-marketplace facilitator creates
user-based computer agents (UPA), providing document-

oriented user interface (UI) to users (e.g. Carlos) based on

the designed V’(X), D’(X) and P’(X) for providing

business services. For example, Carlos can use his

computer agent to make inquiries and receive offers.

Firm

V’’(X), D’’(X), P’’(X)

4. service provision

2. collaborative mapping

Common Business Process Providers

V(X)

B(X)

P(X)

1. collaborative process design

Firm

V’’(X), D’’(X), P’’(X)

E-marketplace facilitator

V’(X), D’(X), P’(X)

Computer agent Computer agent

Firm

V’’(X), D’’(X), P’’(X)

Firm

V’’(X), D’’(X), P’’(X)

E-marketplace facilitator

V’(X), D’(X), P’(X)

Computer agent Computer agent

2. collaborative mapping

3. collaborative mapping 3. collaborative mapping

4. service provision

Fig. 4: CPDASP Model

The CPDASP model is diagrammed in Fig. 4, where the

key business processes are inquiring and offering processes.

An inquiring process is initiated from computer agent and

ends at local firms. An offering process is initiated from

local firms, aggregated, compared and selected at e-

marketplace facilitators, and finally ends at computer
agents. The CPDASP task is to ensure that both inquiring

and offering business processes can be fulfilled.

2.2. Document-Oriented Rule Making
Document-oriented rule making (DORM) describes how

business rules and facts can be turned into XML PRODUCT

MAP (XPM) documents [6] during the business document

template design by concept designers and during the

business document instantiation by users (e.g. Carlos).

XPM-based rule making is important, because it can

effectively check semantic inconsistency during document

transformation. It is novel for document exchange in

business process running.

2.2.1. Facts Classification

In order to maintain semantic consistency between

heterogeneous representations of different contexts and

block out the ambiguous concepts that may not be

semantically consistent between business processes,

DORM distinguishes between consistent facts and
ambiguous facts on real-world facts in rule making.

 Consistent facts (TF), which are mutually agreed

concepts between interaction parties without semantic

consistency issue. In this paper, the consistent facts are

meaningful concepts and derived from the mutual

agreement in P2P and D2F collaboration.

 Ambiguous facts (PF), which are not mutually agreed

concepts between interaction parties with possible

semantic consistency issue, i.e. NOT(TF).

TF proof guarantees the consistent uses of concepts

between heterogeneous business processes.

2.2.2. Categories of Consistent Facts

To effectively prove that a fact is semantically consistent,

we classify facts (F) into four categories.

 Basic fact (BF), which is a noun-form class concept

(i.e. not reified) in terms of a category, a class or an

abstract phenomenon. For example, terms of a product
vocabulary are basic consistent facts.

 Composite fact (CF), which is a noun-form composite

concept. It is composed by a set of logically related

BFs. Any document template or its instance is a CTF.

 Action fact (AF), which is a verb-form action concept

that composes an action. For each AF, the action has

its fixedly designated action sender, action receiver,

action logic, and targeted objects.

 Instantiated fact (IF) is a reified concept that associates

with a class concept. Without associating a class

concept, it is a null fact (NF) referring an independent
symbol or literal without context and is a meaningless

Actio

n

Action

Sender

Action

Receiver Actio

n

Action

Sender

Action

Receiver

Action

Logic

Object

Action

Logic

Object

representation by its own. For example, “33”, “red”

and possible computing formulas.

2.2.3. Proof by Concept Checking Mechanism (CCM)

One responsibility of DORM is to prove whether BF, CF,

AF and IF are semantically consistent facts BTF, CTF,

ATF and ITF carried by a business process in the CPDASP

system scope. To prove it, a CCM is created to check

semantic consistency in CPDASP model, such that:

btf(p)  for each p  CCMbtf(CPDASP);

ctf(p)  for each p  CCMctf(CPDASP);

atf(p)  for each p  CCMatf(CPDASP);

itf(p)  for each p  CCMitf(CPDASP);

where the check is to prove whether the concept p is

collaboratively created (i.e. consistent) in CPDASP model.

2.2.4. Rule-Based and Document-Oriented Process

We represent a business process as a rule-based and

document-oriented process as follows:

a1(d1)  …  ai(di)  …  an(dn),

in which ai is an action fact af belonging to a process (proc)

and di is a composite fact cf (here a document) on which the

action ai acts. Both af and cf and must be proved as

consistent atf and ctf.

Since a document is a composite fact that composes a

set of logically related basic facts bf, these basic facts and

their instantiated facts if must be proved as consistent facts
of btf and itf. If any of them is not proven, the process will

block the unproven facts with a consequence of either

aborting or continuing the process, depending on the

predefined procedural rules and the user-defined rules

directly appeared in the document di.

The main idea of the algorithm design of the consistent

fact proof of a document-oriented process is as follows:

Input a1(d1):

atf(a1)  { //prove outmost action layer, a1CCMatf(CPDASP)

ctf(d1)  { //prove document layer, d1 CCMctf(CPDASP)

{btf(ci)  itf(ci, pi)} // recursively prove the inner layer concepts,

 }} // ci CCMbtf(CPDASP) and ci

CCMitf(CPDASP)

2.2.5. XPM Representation of Facts and Rules

In this part, we describe the representation of facts and

business rules in XPM. The detailed specification of XPM

can be found in [6]. We also show how to convert them

into defeasible logic-like syntax.

An XPM document is very simple and consists of a set
of concepts that can be represented as follows:

<concept iid = “” an = “” cof = “” ct = “” refTo = “”>

 <value pr = “” dt = “” fn = “”></value>

</concept>

where <concept> represents a concept in which the
attributes iid is the unique concept identifier, cof is the

parent concept iid, ct is the type of the concept that defines

how to process the sibling concepts such that whether they

have relations of “single choice”, “partial selection” and

“group” based on lower level concept computational results,

refTo is the referenced concept iid from other concept

vocabulary, and <value> represents the instance structure

of the <concept> in which pr denotes how the instance

looks like, dt is the data type of instance and fn is the
processing method of instance. In collaborative concept

design stage, the particular value of <value> is not

specified. It is instantiated only in the use stage.

In XPM, <concept> has several variant notations in

order to differentiate vocabularies, documents and

processes with each other. They are <voc> and <concept>

in vocabulary, <doc> and <elemon> in document, and

<proc>, <act>, <op> , <logic>, etc. in process.

When an XPM is received by a receiver, it is parsed and

validated against XPM specification. XPM can easily

represent all types of business concepts in both

collaborative design stage (as templates) and automatic use
stage (as instances). To utilize defeasible reasoning

capability, XPM documents can be converted to defeasible

logic-like syntax, following the convertion rules (cr):

cr1: xpm: concept(iid)  fact(iid)

// iid attribute to be a fact and no <value> instance.

cr2: xpm: concept(iid, v)  fact(iid(v))
// iid attribute to be a fact with <value> instance.

cr3: xpm:concept(iid2){concept(iid1)}, iid1  iid2
// Single child concept {iid1} as antecedent and parent

concept iid2 as conclusion.

cr4: xpm: concept(iid2, v){concept(iid1, v)}, iid1(v) 
iid2(v).

// Single child reified concept {iid1} as antecedent and

parent reified concept iid2 as conclusion.

cr5: xpm:concept(iidp, v){concept(iid1, v), …, concept(iidn,

v)}, iid1(v), …, iidn(v)  iidp(v) .
// Multiple children reified concepts {iid1, …, iidn} are

antecedents and parent reified concept iidp is conclusion .

r6: xpm: concept(iidr, rank) < concept(iids, rank) 
iidr(rank) > iids(rank).
// Less ranking number in concept (i.e. higher ranking),

higher priority in superiority relation.

In summary, DORM uses XPM document to represent

business rules to disambiguate business semantics.

2.3. Reasoning with Defeasible Logic

2.3.1. Inquiring/Offering Process in Reasoning

In CPDASP model, a business process proceeds forward on

a concept supply chain [6], where a reified business

document is transformed across heterogeneous contexts by

procedural mapping rules. For the inquiring and offering

process, the particular process steps can be as follows:

Step1: the inquiry document (e.g. Fig. 5), is sent by the
inquirer from the user’s computer process agent (UPA) and

arrives at destinations of firms’ systems (FIRM) in offerers’

understandable forms through the path of e-marketplace

facilitator (EMp) and common business process provider

(BPP) (optional).

Step 2: each FIRM, after receiving, needs to analyze and
reasons the received inquiry document whether it can make

offer based on (1) the requirements shown in the received

inquiry document, (2) the offerer’ business rules, and (3)

the offerer’s available stocks. All FIRM uses the defeasible

reasoning to produce offers.

Step 3: Upon the offers are ready, all FIRM send back
the offers automatically to UPA in following alternatives:

Alternative 1: directly sending back to UPA via EMp if

FIRM and UPA are within the same EMp.

Alternative 2: indirectly sending back to UPA via EMp

via BPP if FIRM and UPA are not within the same EMp.

In this step, EMp or EMp/BPP (if alternative 2) need to

defeasibly reason on the received offers for best offers for

UPA based on the original requrements in the inquiry

document (see example in Fig. 5). After best offers are

made, the merged offer result is sent to UPA by EMp

through or not through BPP.

It is obvious that the key issue in the inquiry/offering

business process is the the defeasible reasoning on the

concept supply chain in the CPDASP model but still
needing to accurately maintainining semantic consistency.

2.3.2. Product Offer Reasoning Model

Our solution to the above issue has three aspects: First,

for each XPM document received by FIRM, EMp or BPP, a

consistency check must firstly be made by the concept

checking mechanism (CCM) (see Section 2.2.3) to ensure
all concepts in a received document are semantically

consistent between UPA, FIRM, EMp and BPP. Second,

the XPM concepts, rules, offers and decisions are extracted

and translated into defeasible logic facts and rules based on

the conversion rules described in Section 2.2.5. Third, best

offers are generated applying defeasible reasoning.

In the following, a general product offer reasoning

model is proposed on defeasible logic to generate best

offers. The reasoning model has the following steps:

(1) Positiveness As Success (PAS) for inclusion, which

finds out the successful possible product set (PPS) that
satisfies the test of subject product (SUB) in product

sources. The query rule is:

R1: Query(SUB)  PPS(SUB).

(2) Negation As Failure (NAF) for exclusion in inquirer’s
view, which finds out the reduced product set (RPS) in

PPS(SUB) by applying the defeasible rule of NAF [2] by

excluding the product set, matched with the negated

required true facts & rules (TFR) in the inquiry document,

from PPS(SUB). The exclusion rules are:

R2: TFRi(PPS(SUB))  RPS(SUB);

for all TFRi not matched in PPS(SUB), they are not in

RPS(SUB).

R3: (R2 > R1)  RPS(SUB);

for all in PPS(SUB) not matched with TFRi(PPS(SUB)),

they are excluded from PPS(SUB) thus to produce

RPS(SUB).

(3) Negation As Failure (NAF) for exclusion in offerer’s

view, which finds out the offerable product set (OPS) in

RPS(SUB) by applying NAF rule by excluding the product

set, matched with the true non-offerable facts & rules (NFR)

set by the offerer, from RPS(SUB). The exclusion rules are:

R4: NFRi(RPS(SUB))  OPS(SUB);

for all NFRi matched in RPS(SUB), they are not in

OPS(SUB).

R5: (R4 > R3)  OPS(SUB);

for all in RPS(SUB) matched with NFRi(RPS(SUB)), they

are excluded from RPS(SUB) thus to produce OPS(SUB).

(4) Best offers generation by ranking offerable products,

which finds out the best offerable set (BOS) of products by

computing ranking results (RNK) of OPS(SUB) for each

ranking criterion (CRI) applying superiority relation >.

The ranking rule is:

R6: CRIp(SUB, RNKi) > CRIp(SUB, RNKj) 
 CRIp(SUB, RNKi).

R7: CRIp(SUB, RNKi) > CRIq(SUB, RNKi) 
 CRIp(SUB, RNKi).

For the same ranking criterion, lower ranking number in

higher ranking sequence is superior to the higher ranking

number in lower ranking sequence. For the different

ranking criteria, higher priority criterion is superior to the

lower priority criterion.

It should be pointed out that for the e-marketplace

facilitators (EMp), they only need to experience R6 and R7

to make ranking to find the best offers because their

received offers from firms’ systems are all offerable.
<xpm><head><proc iid = "p.2" an="inquire apartment" from="url" to="url"><o iid="p.2.1" an="inquire to receive" vis="public" did="d.2.1" lid="l.2.1"/></proc></head>

<body><doc name="house rental inquiry sheet" lang="en" refTo="d.2">

 <elemon iid="e" an="apartment" ct="atomic" refTo="voc:house-c3">

 <!--General requirements-->

 <elemon iid="e.1" an="size"><value dt="sqm" fn="LgAndEq">45</value></elemon>

 <elemon iid="e.2" an="bedrooms"><value dt="val" fn="LgAndEq">2</value></elemon>

 <element iid="e.3" an="Pet raising" refTo="act:RaisePet"><value dt="string" fn="IS">yes</value></element>

 <elemon iid="e.4" an="Price"><value dt="USD" fn="LessAndEq">400</value></elemon>

 <elemon iid="e.5" an="Floor"><value dt="val" fn="LgAndEq">3</value>

 <elemon iid="e.5.1" an="Elevator"><value dt="string" fn="IS">yes</value></elemon></elemon>

 <!--Specific requirements related to acceptable cost computation-->

 <elemon iid="e.6" an="Cost in central city" ct="comp"><value dt="USD" fn="Fomula">{e.6.2+e.6.3+e.6.4}</value>

 <elemon iid="e.6.1" an="Central city"><value dt="string" fn="IS">yes</value></elemon>

 <elemon iid="e.6.2" an="Cost of min size"><value dt="USD" fn="Eq">300</value></elemon>

 <elemon iid="e.6.3" an="Cost of extra size" ct="comp"><value dt="USD" fn="Formula">{e.6.2.1*e.6.2.2}</value>

 <elemon iid="e.6.3.1" an="Extra size"><value dt="sqm" fn="VAR">{x}</value></elemon>

 <elemon iid="e.6.3.2" an="Price"><value dt="USD" fn="val">5</value></elemon></elemon>

 <elemon iid="e.6.4" an="cost of garden size" ct="comp"><value dt="USD" fn="Formula">{e.6.3.1*e.6.3.2}</value>

 <elemon iid="e.6.4.1" an="Garden size"><value dt="sqm" fn="VAR">{x}</value>

 <elemon iid="e.6.4.2" an="Price"><value dt="USD" fn="val">2</value></elemon></elemon></elemon></elemon>

 <elemon iid="e.7" an="Cost in suburb" ct="comp"><value dt="USD" fn="Formula">{e.7.2+e.7.3+e.7.4}</value>

 <elemon iid="e.7.1" an="Suburb" ct="comp"><value dt="string" fn="IS">yes</value></elemon>

 <elemon iid="e.7.2" an="Cost of min size"><value dt="USD" fn="Eq">250</value></elemon>

 <elemon iid="e.7.3" an="Cost of extra apartment" ct="comp"><value dt="USD" fn="Formula">{e.7.3.1*e.7.3.2}</value>

 <elemon iid="e.7.3.1" an="Size"><value dt="sqm" fn="VAR">{x}</value></elemon>

 <elemon iid="e.7.3.2" an="Price"><value dt="USD" fn="val">5</value></elemon></elemon>

 <elemon iid="e.7.4" an="Cost of garden" ct="comp"><value dt="USD" fn="Formula">{e.7.4.1*e.7.4.2}</value>

 <elemon iid="e.7.4.1" an="Size"><value dt="sqm" fn="VAR">{x}</value></elemon>

 <elemon iid="e.7.4.1" an="Price"><value dt="USD" fn="val">2</value></elemon></elemon></elemon>

 <!--Inquirer's decision for priority-->

 <elemon iid="e.8" an="Cheapest in price" ct="rank">1</elemon>

 <elemon iid="e.9" an="Largest Garden size" ct="rank">2</elemon>

<elemon iid="e.10" an="Largest Apartment Size" ct="rank">3</elemon></elemon>

</doc></body></xpm>

Fig. 5: Carlos’ Rental Inquiry in XML Product Map (XPM)

3. Carlos’ Inquiry Example
A concrete example of Carlos’ apartment rental inquiry is

provided to see how an inquiry can be answered using

defeasible reasoning based on XPM files forwading

between involved parties. The XPM example is shown in
Fig. 5 and the defeasible reasoning process is shown in

Fig. 6. For readability purpose, we use readable form of

predicates to replace the iid-based predicates specified in

Section 2.2.4 conversion rules for machine use.
R1: Query(X)  PPS(X) // X is apartment

// R2: TFRi(PPS(X))  RPS(X), the following Vx is concept value

r2: bedrooms(X, Y), Y < Vx  RPS(X) // Y is bedroom number

r3: size(X, Y), Y < Vx  RPS(X) // Y is apartment size

r4: ¬pets(X) => RPS(X)

r5: floor(X,Y), Y > Vx, elevator(X)  RPS(X) // Y is floor number

r6: cost(X,Y), Y > Vx  RPS(X) // Y is Carlos’ max acceptable cost

r7: size(X,Y), extraSize(X, E), garden(X,G), central(X)  cost(X,
Y+E+Z) // Y, E are costs of apartment sizes, G is garden cost

r8: size(X,Y), exSize(X, E), garden(X,G), suburb(X)  cost(X, Y+E+Z)

R3: (r2 > R1, r3 > R1, r4 > R1, r5 > R1, r6 > R1)  RPS(SUB)

// R4: NFRi(RPS(SUB))  OPS(SUB)

r9: maxCost(X,Y), offerable(X,Z), Y < Z  RPS(X) // Y is Carlos’
willing to pay max cost, Z is the offerer’s minimum price to offer.

R5: (r9 > R3)  OPS(SUB)

// R6, R7 of Section 3.3.2 to best offers

r10: cheapest(X) => offer(X)

r11: cheapest(X), largestGarden(X) => offer(X)

r12: cheapest(X), largestGarden(X), largestApartment(X) => offer(X)

r11 > r10, r12 > r10, r12 > r11

Fig. 6: Reasoning of Best Offer on Carlos’ Example

In this example, offers from real estate agents, which
also set rules of minimum acceptable prices for their

offers. These rules are not presented in the XPM inquiry

document shown in Fig. 5 but in the rule database of

offerers.

3.1. Collaborative Human-Agent Framework
Given the design principles of Section 2, CoDORM

system needs to implement two business processes: a

rental inquiry process from UPA (e.g. Carlos’ personal

agent) to FIRM, and a rental offer process from FIRM to

EMp/BPP to UPA (see Section 2.3.1).

To realize these two processes, the CoDORM system

is implemented to include four subsystems of UPA, FIRM,

EMp and BPP in different locations. It provides automatic

exchange of inquiries and offers, and fulfills the tasks of

collaboratively designing and maintaining the semantic

consistent business concepts in the forms of business
vocabularies, documents and processes. It is implemented

in a hybrid collaborative human-agent framework, which

mixes with human and automated agents, shown in Fig.7.

Inquiry

Offer

H
u

m
a

n
A

g
e

n
tServices provided by both

human and agentsusers

Business Processes

Business Documents

Business Vocabularies

Figure 7: Hybrid Collaborative Human-Agent Framework

In this framework, humans are responsible for

providing the human-related work, e.g. collaborative

designing, editing, modifying, approving and publishing

business concepts. Automated agents are responsible for

non-human work, e.g. automatically analyzing,

aggregating, mapping, matching and forwarding human-

provided business concepts. Users of EMp, on the other

hand, simply subscribe and use the services that both

human and agents provide.
The benefit of responsibility separation between

human and automated agents is that agents have no rights

to make erroneous inferences without proven consistent

facts and rules. It prevents semantic conflicts between

users and designers.

3.2. System Architecture and Modules
The CoDORM systems adopt a distributed P2P/D2F

collaboration architecture discussed in [8]. P2P refers to

the peer-to-peer collaboration architecture, where BPP

collaboratively design and maintain business concepts of

common BV (comVoc), common BD (comDoc) and

common BP (comProc). D2F means dominant-to-follower,

which is point-to-point collaboration architecture. In this

architecture, different EMp localize comVoc, comDoc

and comProc of BPP into their personalized e-

marketplace BV (empVoc), e-marketplace business BD
(empDoc) and e-marketplace BP (empProc). FIRM again

localize empVoc, empDoc and empProc into their

personalized firm BV (frmVoc), firm BD (frmDoc) and

firm BP (frmProc).

All above-created common and local concepts

constitute the business concepts (i.e. consistent facts of

BTF, CTF and ATF). System components for the

collaborative production of general concepts constitute

CoDORM Designer subsystem.

At UPA (e.g. Carlos’ UPA), users (e.g. Carlos) create

and use reified concepts (e.g. inquiry/offer documents and

processes). At EMp and FIRM sides, users are those
people who process particular inquiries and offers. The

system components related to creating and using reified

concepts constitute CoDORM User subsystem.

Reified concepts of process actions and documents are

sent from UPA to EMp. They are processed, stored and

forwarded to FIRM, which again process, store and

answer reified concepts back to EMp finally back to UPA.

All these activities are not human-involved and are agents’

tasks. The components for these activities constitute the

CoDORM Exchanger subsystem.

The above subsystems are all distributed, that is, they
shall be implemented in different locations of UPA, EMp,

FIRM and BPP on Internet. Fig. 8 describes CoDORM

architecture in four layers of collaboration, concept, logic

(or structure) and messaging.

EMp

EMp

Concepts

FIRM

Mapping

Concepts

Instance

Inquiries

& offers

EMp Concept

Mapper

EMp-FIRM

Concept

Translator

BPP

Common

Concepts

EMp

Mapping

Concepts

Common

Concept Mapper

BBP-EMp

Concept

Translator

UPA

Instance

Inquiries

& offers

XPM

Converter

FIRM

Firm

Concepts

Instance

Inquiries

& offers

Firm

Business

Rules

XPM Exchanger (Directory, Session Manager)

UPA UserEMp Designer FIRM DesignerBPP Designer

Concept Localizer Inquiry/Offer EditorCommon Concept Designer Rule Designer

Reasoning

Module Concept Validator

Rule Translation

Collaboration

and Use

Layer

Concept

Storage

Layer

Logic

(or Structure)

Layer

Messaging

Layer

Fig. 8: CoDORM Architecture

- The messaging layer is the bottom layer and is

responsible for exchanging business concepts between

UPA, EMp, FIRM and BPP in XPM on HTTP protocol. It

consists of XPM Exchanger Module in all locations. It

consists of search directory of users, EMp, FIRM and

BPP and Session Manager for managing interactions).
- The logic (structure) layer is responsible for

translating the results of one subsystem to another through

Concept Translator and Concept Mapper both appeared in

BPP and EMp and reasoning inquiries for making offers

through Reasoning Module. The Reasoning Module

includes Rule Translator for translating between XPM

concepts and defeasible logic rules, and Concept

Validator that parses and validates the XPM

representations.

- The concept storage layer is responsible for storing
and retrieving various business concepts from both

collaborative design and user creation. In this layer, there

are Common Concepts collaboratively created by BPP,

EMp Concepts, EMp Mapping Concepts and Instance

Inquiries and Offers collaboratively created by EMp, Firm

Concepts, FIRM Mapping Concepts, FIRM Business

Rules and Instance Inquiries and Offers by FIRM, and

Instance Inquiries and Offers by UPA.

- The collaboration and use layer is the highest layer,

which is responsible for the collaborative creation and

edition of common concepts in BPP, EMp concepts in

EMp and FIRM concepts in FIRM, and for the use of
EMp concepts in UPA.

Different roles interact with each other using their own

user interfaces provided by the collaboration and use layer.

In particular, BPP designers use Common Concept

Designer as collaborative concept editor, EMp designers

and FIRM designers use Concept Localizer to personalize

their own concepts. FIRM also uses Rule Designers to

develop their own business rules that are used for limiting

the offers production in reasoning process. UPA users just

simply use Inquiry/Offer Editor to read, write, send and

receive the inquiries and offerns.

4. Related Works
The semantic consistency maintenance between

heterogeneous contexts is a rather new research issue in

the area of e-Commerce. Currently, few works could be

found except in the authors’ research groups. Thus, the

theme of this paper mainly relates to CONEX [6] and

CODEX [7], which are early works of the authors. They

focus on how to represent heterogeneous concepts and

how to apply collaboration method to maintain semantic

consistency between heterogeneous contexts. In

developing reasoning method for business rule inference,
this paper applies the defeasible logic [1][2] as its

foundation.

5. Conclusion
In this paper we studied the semantic consistency

maintenance issue between heterogeneous contexts, that

is, how an inquiry from an unknown user of an e-

marketplace can be received and answered in a

semantically consistent way by a firm that is not in the

context of the user’s e-marketplace. The proposed

solution of this paper uses XPM of collaborative concept

to represent semantically consistent business concepts and

adopts defeasible logic to reason with XPM document-
oriented business rules for inquiring and offering. We

motivated the approach with a real-world apartment rental

problem and explained it in architecture of collaborative

business process design and automatic service provision.

We reported the implementation specification within a

hybrid human-agent framework.

Our approach has advantages comparing with known
solutions. (1) We do not rely on single shared domain

vocabularies that cannot cope with the issue of semantic

consistency maintenance, but a set of collaboratively

designed and mapped cross-domain business concepts for

enabling heterogeneous concept exchange. (2) The

architecture we provide is collaborative, distributed, role-

based and service-oriented. It is highly flexible for many

semantically different systems to both join and leave

without unfavorable consequences. (3) We introduce a

proof mechanism to prove that all business concepts in

reasoning for producing outgoing processes are all

semantically consistent facts. Thus, we guarantee
semantically consistent reasoning. (4) We use document-

oriented rule making method by providing predefined

document templates. It enables users to specify business

rules in a simple web-based form, which again omits the

need of programming in logic layer for each business

process. (5) We use XPM to represent concepts. It helps

the separation of structure representation from concept

representation, which enhances the design reusability of

both concept structures and concept annotations.

The main limitation of our work is: XPM has not been

evolved to include reusable verb-formed concepts, i.e.
templates of action logic have not been provided.

In future, we intend to extend the work in the

following directions: (1) Provide a website that can

physically demonstrate the approach. (2) Provide real

common and local concept editors for people to localize

their own local concepts in the demo website so that the

real-world collaborative concept community can be

established. (3) Publish a stable XPM specification for

business concept design.

Acknowledgements
The work reported in this paper has been partially

supported by University of Macau Research Grand.

References
[1] Antoniou, G., Billington, D., Governatori, G. and

M.J. Maher. Representation results for defeasible

logic. ACM Transactions on Computational Logic 2,

2 (2001) 255 – 287.

[2] Antoniou, G. and A. Bikakis. DR-Prolog: A System

for Defeasible Reasoning with Rules and Ontologies

on the Semantic Web. IEEE Transactions on

Knowledge Data and Engineering 19(2), (IEEE

Computer Society, 2007) 233-245.
[3] Berners-Lee, T., Hendler, J. and O. Lassila. The

Semantic Web. Scientific American, 284(5), (2001):

34-43.

[4] Dean, M. and G. Schreiber (Eds.). OWL Web

Ontology Language Reference (2004).

www.w3.org/TR/2004/REC-owl-ref-20040210/.

[5] Gruber, T. A Translation Approach to Portable

Ontologies. Knowledge Acquisition 5(2), (1993)199-

220.

[6] Guo, J. Collaborative Concept Exchange, VDM

Publishing: Germany, 2008.
[7] Guo, J. Inter-Enterprise Business Document

Exchange. In: Proc. ICEC’06, (ACM Press, 2006)

427-437.

[8] Guo, J. A Transparent Collaborative Integration

Approach for Ad Hoc Product Data. In: Proc.

CEC’06/EEE’06 (IEEE Computer Society Press

2006).

[9] Keller, A. and M. Genesereth. Multivendor Catalogs:

Smart Catalogs and Virtual Catalogs. EDI Forum:

Journal of Electronic Commerce 9(3) (1996) 87-93.

[10] Segev, A., Wan, D. and C. Beam. Electronic

Catalogs: a Technology Overview and Survey
Results. In: Proc. CIKM’95 (ACM Press, 1995) 11-

18.

	Introduction
	CoDORM Approach
	CPDASP Model
	Document-Oriented Rule Making
	Facts Classification
	Categories of Consistent Facts
	Proof by Concept Checking Mechanism (CCM)
	Rule-Based and Document-Oriented Process
	XPM Representation of Facts and Rules

	Reasoning with Defeasible Logic
	Inquiring/Offering Process in Reasoning
	Product Offer Reasoning Model

	Carlos’ Inquiry Example
	Collaborative Human-Agent Framework
	System Architecture and Modules

	Related Works
	Conclusion
	Acknowledgements
	References

