
Collaboratively Maintaining Semantic Consistency of
Heterogeneous Concepts towards a Common Concept Set

Jingzhi Guo, Iok Ham Lam, Chun Chan and Guangyi Xiao
Department of Computer and Information Science, University of Macau

Av. Padre Tomás, Pereira, S.J., Taipa, Macau
{jzguo, ma46521, ma46507, ya97409}@umac.mo

ABSTRACT
In e-business, creating a common concept set for business integra-
tion, interoperation and interaction has to consider the heterogene-
ity reality of different interpretations from multiple concept pro-
viders. Maintaining semantic consistency between multiple con-
cept providers is a difficult problem. To solve this problem, this
paper first reviewed the existing technologies of collaborative
editing systems and consistency maintenance in the areas of both
CSCW and e-business. Based on the discussion of existing tech-
nologies, it then proposes a novel CHCES approach, which di-
vides a collaborative editing system into two layers in topology
and introduces four strategies to edit common concepts between
the two layers. A set of operations is designed, which demon-
strates the solution.

Author Keywords
Semantic consistency, collaborative editing, concept

ACM Classification Keywords
H.5 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces – Collaborative computing; Web-based in-
teraction; K.4.4 [Computing Milieux]: Computers and Society –
Electronic Commerce.

General Terms
Algorithms, Design, Human Factors

1. INTRODUCTION
In e-marketplace, business concepts such as the documents of
inquiry, offer, acceptance, contract, invoice, draft, and bill of lad-
ing must be accurately exchanged between business partners with-
out misinterpretation. Misinterpretation will lead to legal conse-
quences. For example, receiving a message of “orange refrigera-
tor, price at 200” from a US company, the computer agent of a
Japanese company could misinterpret it as “easy-to-carry small
sized cooler bags often used for camping and keeping fruits like
oranges in low temperature, and its price is 200 Japanese Yens per
piece”, as compared with the original meaning of “household re-
frigerators normally used in kitchens to keep foods in low tem-
perature, its color is orange, and its price is USD200 per piece”.

When this misinterpretation happens in e-marketplace systems,
business orders could be wrongly placed and executed, and then
legal disputes could occur between two parties.

This problem occurs when the heterogeneous e-business concepts
are produced from unknown buyers and sellers who situate in their
own “semantic communities” [19] but want to do e-business to-
gether. Doing e-business together is a way of collaboratively
working in a common information space (CIS) [20], where proper-
ties of interdependence, distribution, autonomy and emergence
have to be satisfied [12]. This type of collaboration further asks
for the semantic consistency maintenance for accurate concept
exchange, such as the accurate meaning understanding of any
incoming terms, documents and operations that may be used for
further e-business communication.

Consistency maintenance has long been researched in collabora-
tive editing systems of Computer Supported Cooperative Work
(CSCW) area and is divided into syntactic consistency mainte-
nance and semantic consistency maintenance. Traditionally in
CSCW, the former often refers to achieving consistency of viewed
copies, causal relations and operation effects between same appli-
cations in collaboration (e.g. REDUCE [22] and CoMaya [1]). The
latter, in general, means to ensure the application semantics when
applications in collaboration are not identical, for example, appli-
cations of different versions [8]. This type of consistency aims to
provide a set of consistent notions or artifacts, so that another
collaborative toolkit (or collaborative engine) as an infrastructure
for applications can be consistently developed to support the col-
laborative work between application users. Today, as the rapid
development of Internet-based e-business, sellers and buyers re-
quire working together for doing business in order to maximize
their sales revenue, even if they never meet with each other before.
This practice presents two very challenging research requirements:
how to make contextually different sellers and buyers to work
together, and how to ensure that both sellers and buyers share the
consistent meaning understanding of information that is in ex-
change, so that they can make unambiguous and consistent deals.
Obviously, the first requirement asks for a cross-context collabora-
tive toolkit where both sellers and buyers can consistently edit
their communication messages for business. This surely requires
studying both syntactic and semantic consistency maintenance.
The second requirement, somehow, steps out of the existing
CSCW research, which demands to maintain semantic consistency
between heterogeneous concepts in information exchange when
sellers and buyers edit their business messages. This paper is mo-
tivated by the second requirement to complement the existing
CSCW research.

In literature, existing researches on maintaining semantic consis-
tency of concepts between heterogeneous concept systems can be
summarized into three categories of approaches [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’10, June 19-23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

213

(A1) {Ci, Cj | Ci, Cj ⊆ S}: all heterogeneous concept sets (C) for
exchange shall conform to a standard concept set (S), for example,
UNSPSC.org, ebXML.org, or x12.org.
(A2) {Ci, Cj | Ci ∪ Cj = M}: all heterogeneous concept sets (C) for
exchange shall be bridged (∪) by a secondary mediating concept
set (M), for example, ontology design [6, 15, 18] or mediator de-
sign [25, 27].
(A3) {Ci, Cj | Ci ∩ Cj = Γ }: all heterogeneous concept sets (C) for
exchange shall be mutually agreed (∩) on meanings at a collabo-
rative concept set (Γ) [13]. For example, “fridge” of C1 and “re-
frigerator” of C2 can be exchanged if and only if they are mutually
agreed in meaning by collaboration.

It is obvious that Approach A1 is not workable because no one can
guarantee that Ci, Cj of unknown parties are all converted to S.
Approach A2 guarantees a unified access to Ci, Cj but cannot
guarantee Ci =sem Cj (Ci, Cj are semantically equal). Approach A3
assures Ci =sem Cj through a collaboration mechanism Γ where
parties make agreements on semantic equivalence for any hetero-
geneous concepts.

This paper aims to solve the problem using Approach A3 by pro-
posing a novel and general collaboration mechanism, called
CHCES and pronounced as [∫es], where semantic consistency of
heterogeneous concepts is maintained by collaborative editing.
The CHCES design has the following requirements: (1) distribu-
tion: individual concept editing systems shall be distributed on
multiple Internet locations; (2) personalization: editing user inter-
faces and editing concept sets of individual editing systems shall
be maintained differently with each other; (3) semantic consis-
tency: a same concept in different personalized (or heterogeneous)
forms shall be explicitly and mutually agreed on its meaning in
CHCES environment.

The rest of the paper will be arranged as follows: Section 2 dis-
cusses the related and prior work of CHCES system. Section 3
describes CHCES system framework. In Section 4, semantic con-
sistency maintenance of heterogeneous concepts is depicted, fol-
lowed by a conclusion.

2. PRIOR AND RELATED WORK

2.1. Related Work
In CSCW literature, collaborative editing systems are groupware
that allows multiple users to view and edit the same concept, text,
graphic, image, and multimedia document at the same time from
multiple sites connected by communication networks. Tradition-
ally, such systems focus the research on the satisfying the charac-
teristics of real-time or non-real-time, distributed or centrally-
managed, and constrained or unconstrained. Real-time is that the
response to local user actions is quick and the latency for reflect-
ing remote user actions is low. Distributed is that collaborating
users may reside on different machines connected by different
communication networks with non-deterministic latency. Uncon-
strained is that multiple users are allowed to concurrently and
freely edit any part of the document at any time, in order to facili-
tate free and natural information flow among multiple users [22].
By contrast, non-real-time, centrally-managed and constrained
have the relatively opposite meanings of real-time, distributed and
constrained. To satisfy some of these characteristics for particular
applications, different approaches are developed and can be cate-
gorized in Table 1.

Table 1: Types of Collaborative Editing Systems
Type Characteristics Research examples

1 Non-real-time, centrally man-
aged, constrained

CVS [11]

2 Real-time, centrally-managed,
constrained

Lantz [16], Begole et al [2] ,
C/Webtop [4]

3 Real-time and non-real-time,
centrally-managed, constrained

ActivityExplorer [26], Miramar
[14]

4 Real-time, centrally-managed,
unconstrained

MOODS [5]

5 Real-time, distributed, con-
strained

Flexible JAMM [3]

6
Real-time, distributed, uncon-
strained

GROVE [10], REDUCE [22],
GRACE [23], CoWord [24],
CoMaya [1]

7 Real-time and non-real-time,
distributed, unconstrained

Shen and Sun [21] to extend Type
[4].

For the listed types of collaborative editing systems, a core re-
search issue is to maintain consistency between operation results
by collaborative users from their situated applications (either ho-
mogeneous or heterogeneous). The difficulty of consistency main-
tenance comes from the two facts of both syntactic inconsistency
of spatial, structural, and temporal [8], and semantic inconsistency
including non-shared application semantics (e.g. meanings of
terms, commands, and their compositions) when applications used
by users are coded in different artifacts. Syntactic consistency
problems can often be resolved by various solutions of locking,
serialization, operational transformation [22] and multi-versioning
[23]. While there are many solutions to syntactic consistency, the
research on semantic consistency for collaborative editing is not
well explored. The early understanding of why semantic consis-
tency is needed is the lack of knowledge of application semantics
when designing collaborative toolkits above the applications to
support users to work together on various either single or multiple
applications. For example, in the Prospero of Dourish [7], semantic
consistency is the data store consistency from the perspective of
the application domain linking to the designed collaborative tool-
kits. The management of semantic consistency of data store is
independent of syntactic consistency of the collaborative toolkits.
Similarly, Edwards’ Timewarp [8] considers semantic consistency
as a collection of shared artifacts (particularly a set of shared ac-
tions) that enables to build an infrastructure as a collaborative
toolkit below the applications, permitting divergent views from
application users. These two examples thus design shared seman-
tics of terms or action (i.e. operation) naming for sharing between
collaborative toolkits, which can further resolve syntactic incon-
sistency. This is a correct thinking. Nevertheless, it is still an in-
tention of sharing application semantics and is also not well elabo-
rated. Modern understanding of semantic consistency maintenance
is far beyond the application domain. For example, ontology de-
sign attempts to share concepts within an industry domain across
particular application contexts, where shared ontology as metadata
can leverage many different applications (see Approach A2 in
Introduction). Standardization is another similar approach, which
supports many applications (see Approach A1 in Introduction) if
and only if all involved applications adopt the same standards of
shared terms. These two approaches are now, somehow, noticed
by some researchers in CSCW area (e.g. Intermezzo [9]). How-
ever, the ontology modeling for cross-context collaborative editing
does not imply unproblematic for semantic consistency mainte-
nance. When editors are situated in heterogeneous contexts, their
understanding on terms presents synonym and homonym prob-
lems (e.g. given two actions “quote” and “offer”, they may either
mean the same or different). Thus, the terms themselves for sup-
porting to design collaborative editing systems need the collabora-

214

tive design again. What’s more, in e-commerce application design,
the users even require the consistent meaning understanding of
terms in communication but not merely for application semantics.
For example, when user A sends a refrigerator order to user B, they
need to make sure whether “refrigerator” meaning is consistent to
their common understanding. If they share different understanding,
legal disputes may arise. This has motivated the latest design of
collaborative conceptualization approach (see Approach A3 in In-
troduction [13]), which is the theoretical foundation of this paper for
CHCES design.

2.2. Prior Work
CHCES is a collaborative editing system for achieving semantic
consistency. Although it is related to collaborative editing systems
and their consistency maintenance technology, it is thoroughly
based on the prior research of Collaborative Concept Exchange
(CONEX) [13], where heterogeneous product concepts can be se-
mantically exchanged accurately if and only if the following
mapped path exists for concept equivalence:

Source concept 1 ↔ map(Source concept 1, Local concept 1)
↔ Local concept 1 ↔ map(Local concept 1, Common concept
1) ↔ Common concept 1 ↔ map(Common concept 1, Common
concept 2) ↔ Local concept 2 ↔ map(Local concept 2, Source
concept 2) ↔ Source concept 2.

It is obvious that Source concept 1 is semantically equivalent to
Source concept 2 if all maps exist and the mapped concepts are
mutually agreed in meaning equivalence.

In [13], concept equivalence is ensured in two types of collaborators:
common-common collaborator to build the mappings between two
common concepts, and local-common collaborator to build map-
pings between one local concept and one common concept. These
collaborators are made in an XPM concept representation specifica-
tion [13] on a semantic consistency maintenance model, where three
properties of structure mappability, concept equivalence and context
commonality must be satisfied. CONEX approach has the following
advantages:

• The concept equivalence relationship is built on the basis of
heterogeneous concept forms. It thus meets the requirements of
personalization and allows legacy concepts to be mapped. For
example, the heterogeneous forms of “refrigerator”, “fridge”,
“电冰箱” and “réfrigérateur” is semantically equivalent if and
only if they are mutually agreed in meaning equivalence for all
concept designers.

• The separation of concept (i.e. concept meaning) from its struc-
ture (i.e. concept form or concept syntax) by introducing the
unique identifier for each concept, which creates a relationship
“concept annotation (AN) → concept identifier (IID)” such that
an iid can represent all heterogeneous forms of concepts if and
only if their iids are the same or their iids are semantically
mapped by collaborative agreements, for example, “refrigera-
tor→1101”, “fridge→d358”, “电冰箱→1101” and “réfrigéra-
teur→1101” and map(1101, d358). This separation simplifies
the way of semantic consistency maintenance between hetero-
geneous concepts.

In designing common-common collaborator, [13] introduces a node
locking procedure to ensure that in any time there is only one single
pair between a unique IID and an equivalent concept in any forms. It
also discusses a translation procedure that allows different natural
languages for a same concept to be automatically translated and
semantically verified. The work of [13] has met the requirements of

distribution, personalization and semantic consistency. However, it
is only restrictedly applicable to the field of electronic product cata-
logues. A dedicated discussion for its generalization is needed for
editing any concepts. In addition, node locking procedure affects
concurrent operations on a same concept while machine translation
procedure has introduced unpredictable semantic consistency prob-
lem in translation for concept annotation that defines a common
concept.

3. CHCES FRAMEWORK
The meaning consistency for information exchange, but not only for
consistent application semantics, requires a fully novel solution. To
achieve this goal, this Section describes a CHCES framework where
common concepts across contexts are collaboratively edited and
their semantic consistency is maintained through the system design
without node locking and machine translation.

3.1. CHCES Topology
Definition 1: CHCES is topologized as a tuple (G, E, ⇔, ↔), where
G is a global editing system maintained by an e-marketplace pro-
vider (EMP), E are common editing systems maintained by multiple
common concept providers (CCP), “⇔” is a WAN connection such
that G⇔E, and “↔” is a LAN connection such that {gi↔gj | gi, gj ∈
G}.

CHCES topology can be conceptualized in Figure 1.

By Definition 1, a new business model is suggested as follows: an
e-marketplace provider (EMP) provides the common concept
editing service to common concept providers (CCP) and each CCP
provides common concept mapping service to firms, allowing
them to map local concepts onto common concepts.

3.2. E-System
Definition 2: A common editing system E is a tuple (MEX, OPT,
CED, TCDB, PCDB, EDM), where MEX (Message Exchanger) is
to receive and send XPM-based real-time operation messages or
buffered operation messages. OPT (Operation Transformer) is to
read remote (incoming) XPM operation message from MEX and
execute the operations on a TCDB (Temporary Concept Data-
base). It also reads the local (outgoing) operations on CED and
writes them as XPM messages for MEX to propagate to G. The
TCDB is a temporary database that records all concepts currently
in editing. CED (Common Editor) is a user interface for common
concept editing, which displays all temporary concepts of TCDB
and indexing concepts of PCDB (Permanent Concept Database)
and perceives user’s editing and arbitration operations on these
concepts. PCDB is a permanent database of all finalized common

⇔

Common Concept Providers (CCP)
E

G

⇔ ⇔⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔⇔

↔

↔

E-Marketplace Provider (EMP)

Figure 1: CHCES Topology

215

concepts provided to all connected firms for use. EDM (Editor
Manager) is to store and edit user information of the editor and
responsible for the logon and logoff of G system.

An E-System can be illustrated in Figure 2, in which OPT and
CED are very important in dynamic editing.

Message
Exchanger

(MEX)

Operation
Transformer

(OPT)

Common Editor
(CED)

 Editor
Manager
(EDM)

PCDB

TCDB

Figure 2: E-System Model

Definition 3: Operation Transformer (OPT) is a tuple (XOP, XOS,
OEE), where XOP (XPM Operation Parser) parses and validates
both incoming and outgoing editing operation message on XOS
(XPM Operation Schema). OEE (Operation Event Executor) in-
terprets remote operations from incoming messages and executes
them on TCDB, or reversely transforms local operations into out-
going XPM-based operation messages for MEX.

Definition 4: Common Editor (CED) is a tuple (TDP, PDP, DOE,
AOE), where TDP is TCDB Display, PDP is PCDB Display, DOE
is designer’s operation executor, AOE is arbitrator’s operation
executor. For both DOE and AOE, operations are executed both
locally in TCDB for DOE or in PCDB for AOE and remotely in G
system where the operations are received from MEX of E systems
in XPM operation messages via OPT.

3.3. G-System
Definition 5: A global editing system G is a tuple (MEX, GOT,
ECC, UIID, GCS, RCS, PHB), where MEX is message exchanger
same as in E-System. GOT is the global operation transformer
between MEX and GCS/RCS. ECC is existential concept checker
to find out whether a concept intending to add is already in
GCS/RCS. UIID is the unique concept identifier generator for
adding modifying a concept. GCS is a global concept set for Eng-
lish. RCS is set of regional concept sets in natural languages. PHB
is a set of personal history buffer of each connected E-System. It is
used to store all the consecutive operations propagated to all E-
System.

Figure 3: G-System Model

A G-System can be illustrated in Figure 3, where a PHB is a list of
historical operations in G-system, which are run by any common

editors of E-system and executed on G-system. It consists of all
operations starting from the offline time of any common editors of
E-System. The PHB will be automatically emptied when the long-
est offline common editors of E-System go online.

4. SEMANTIC CONSISTENCY MAINTENANCE
We define E = {E1, E2, …, Em}, where E1 = {e11, e12, …, e1m}, E2
= {e21, e22, …, e2m}, …, Em = {em1, em2, …, emm} such that each Ei
is in same natural language. Subsequently, for TCDB and PCDB
in E, we have:

(1) TCDB=T={T1, T2, …, Tm}, where T1 = {t11, t12, …, t1m}, T2 =
{t21, t22, …, t2m}, …, Tm = {tm1, tm2, …, tmm}.

(2) PCDB=P={P1, P2, …, Pm}, where P1={p11, p12, …, p1m},
P2={p21, p22, …, p2m}, …, Pm={pm1, pm2, …, pmm}.

Our task is to maintain semantic consistency between any two pij
and ppq and between any two tij and tpq, such that any meaning
changes in pij and tij will also exactly be changed in ppq and tpq,
respectively. To maintain this semantic consistency, we adopt four
strategies:

(1) In any time, only a unique common concept identifier (IID) is
assigned to any semantically same concepts. By requiring a
central generation of IID, node locking mechanism is avoided.

(2) Bilingual common concept design is required and English is
suggested as global concept (GC) language and non-English
as common concept (CC) languages. By this strategy, ma-
chine translation is avoided.

(3) PHB is used for all E-systems and automatically executed
when E-System goes online. By this strategy, asynchronous
collaboration is supported.

(4) Arbitrator decides the final acceptable concepts. By this strat-
egy, multiple copies of concept modification in a defined pe-
riod are eliminated.

Steps of maintaining semantic consistency are as follows:
Step 1: Define syntax of TCDB, PCDB, GCS and RCS
(1) TCDB = T = <(IIDG, FCG, ANG, FCX, …), (IIDC, FCC,

ANC, CTX), …>;
(2) PCDB = P = <(IIDG, FCG, ANG, FCX, …), (IIDC, FCC,

ANC, CTX, …>;
(3) GCS = <IIDG, FCG, ANG, FCX, status, …>;
(4) RCS = <IIDC, FCC, ANC, CTX, status, …> ;
where IIDG is in form of ot-ct1 (ot for originalTimestamp to create
new concept, ct1 for currentTimestamp1 to modify ANG). FCG is
English word. ANG is English annotation defining FCG. FCX is
the parent concept of IIDG. IIDC is ot-ct1-ct2 (ct2 for modify non-
English ANC). FCC is non-English word. ANC is non-English
annotation defining FCC. CTX is the parent concept of IIDC. The
“status” denotes whether a concept is in added, deleted, edited and
arbitrated.

For example, in a CCP’s common editor of E system, an added
term “orange” before arbitration will be stored in TCDB as
<(ot111-ct111, “orange”, “orange color”, ot101-ct101, added),
(ot111-ct111, “橙”, “桔黃色”, ot101-ct101, added)>. After arbi-
tration, the new term will be deleted in TCDB and moved to
PCDB as <(ot111-ct111, “orange”, “orange color”, ot101-ct101,
arbitrated), (ot111-ct111, “橙 ”, “桔黃色 ”, ot101-ct101, arbi-
trated)>. Similarly, in G system, the part of global English stan-
dard concept (ot111-ct111, “orange”, “orange color”, ot101-ct101,
arbitrated) will be placed in GCS while the common regional con-

216

cept (ot111-ct111, “橙”, “桔黃色”, ot101-ct101, arbitrated) will
be placed in RCS.

Step 2: Maintain semantic consistency between heterogeneous
concept sets
1. Add a new English global concept gc and add a correspond-

ing non-English common concept cc.
(1) If adding gc to TCDB Then
(2) {If (FCG(gc) ∉ GCS Then // GCS OEE check
(3) {x = UIID(IIDG); // create a new IIDG
(4) IIDG(gc) = x; FCG(x) = gc; // assign to gc
(5) ANG(x) = “ ”; // human annotation.
(6) // find the contexts of FCX and CTX for gc if any
(7) // Write (iidg, fcg, ang, fcx, ctx) to TCDB;
(8) // Propagate (iidg, fcg, ang, fcx, ctx) to GCS;
(9) // Write Add(iidg, fcg, ang, fcx, ctx) to PHB;
(10) If (FCC(cc) ∉ RCS And x ∈ GCS Then // RCS OEE check
(11) {y = UIID(IIDC(IIDG(x))); // create a new IIDC of x
(12) IIDC(cc) = y; FCC(y) = cc;
(13) ANC(cc) = “ ”; // waiting for human input.
(14) // Write (iidc, fcc, anc) to TCDB;
(15) // Propagate (iidc, fcc) to RCS;
(16) // Write Add(iidc, fcc) to PHB;}
(17) Else // Go to modify cc;}
(18) Else // Go to modify gc;}

This guarantees that each newly created concept is semantically
unique for both real-time and asynchronous editing.

For example, when adding an “orange” global concept paired with
regional common concept “橙”, we first check whether FCG =
“orange” is in GCS. If it is not, we generate IIDG = ot111-ct111
as a global concept identifier and let ot111-ct111 represents FCG
= “orange” with the meaning ANG = “orange color”. Likewise,
we have IIDC = ot111-ct111, FCC = “橙”, and ANC = “橙色”
with the status = “added”. When these have been done in common
editor, it is written to TCDB of local E system and propagated to
RCS and PHB of G system, where this ADD operation stored in
PHB is immediately executed by other common editors of E-
system and emptied. If there are some common editors in E sys-
tem are offline, this ADD operation is not emptied until all finish
the execution of this ADD operation.

2. Modify an English global concept gc and modify a non-
English common concept cc.

(1) If (FCG(gc) ∈ GCS Then
(2) {x = UIID(IIDG(gc)) // Get IIDG of gc
(3) y = UIID(x) // new gc IIDG in same ot but diff. ct1
(4) IIDG(gc) = y; FCG(y) = gc; ANG(y) = “ ”;
(5) // Do as 1:(7)-(9) for TCDB, GCS, PHB;}
(6) If (FCC(cc) ∈ RCS Then
(7) {x = UIID(IIDC(cc)) // Get IIDC of cc
(8) y=UIID(x) // new cc iidc in same ot, ct1 but diff. ct2
(9) IIDC(cc) = y; FCC(y) = cc; ANC(y) = “ ”;
(10) // Do as 1:(14)-(16) for TCDB, RCS, PHB;}

This guarantees that all concept modification only happens on
concept annotations respectively for ANG and ANC.

For example, if FCG = “orange” has already been in GCS, there
are two possibilities: one is that the editor wants to modify ANG
of “orange color”, for example, to “color with the hue of that por-
tion of the visible spectrum lying between red and yellow”, or the
editor wants to add a new meaning of “orange”, for example,
ANG = “a kind of fruit having a sweetish and acidic juice”. For
the latter case, a new concept identifier as a homonym of ot111-
ct111 must be created, such as IIDG = ot211-ct211, following
ADD algorithm again.

3. Delete an English global concept gc or a non-English com-
mon concept cc.

(1) Select ANG(gc) from TCDB;
(2) Read x = IIDG(ANG(gc));
(3) Delete gc(x, FCG(x), ANG(x)) in TCDB;
(4) // Find the children gcc of gc under FCX(gcc) = gc;
(5) FCX(gcc) = FCX (gc); // formal context of gc becomes that of gcc
(6) // Propagate Delete(); Multiple deletions on same gc are neglected;
(7) Select (ANC(cc) from TCDB;
(8) Read x = IIDC(ANC(cc));
(9) Delete cc(x, FCC(x), ANC(x)) in PCDB;
(10) // Propagate Delete();Multiple deletions on RCS are neglected;

This guarantees no side effect will have when a concept is deleted.
The formal context (FCX) of a deleted concept becomes the chil-
dren’s formal context. The normal context (CTX) is only upward
and has no effect on any other concepts when a concept is deleted
concept.

4. Make arbitration on any concepts in TCDB.
(1) Select t ∈ TCDB;
(2) Move (t, PCDB);
(3) // Propagate Move(t, PCDB) to GCS and RCS
(4) // Write Move(t, PCDB) to PHB;

This guarantees that only a best modification copy from multiple
semantically-same yet annotation-heterogeneous concepts is se-
lected to PCDB in every arbitration time.

For example, for a given ADD(“orange”) operation of both ANG
= “orange color” and ANG = “color with the hue of that portion of
the visible spectrum lying between red and yellow”, arbitrator has
the right to select only ANG = “orange color” as final annotation.

5. CONCLUSION
Achieving a consistent meaningful understanding in communica-
tion between collaborators is extremely important in collaborative
applications, e-business transactions, and many other software
systems. To fulfill such goal, this paper has described a general
collaboration mechanism, called CHCES, to maintain semantic
consistency between multiple concepts by collaborative editing in
different natural languages. This approach is designed in two lay-
ers of E-System and G-System, in which semantic operations from
different common editors of E-System is controlled by remote G-
System. Particularly, the semantic consistency is maintained by
four strategies of unique concept identifier (solving the problem of
redundant concept creation and modification), bilingual editing
(solving machine translation problem), personal history buffer
(solving asynchronous offline problem), and arbitration (solving
multiple copies of concept creation and modification).

This paper has contributed a new understanding of how to use
collaborative editing technology to maintain consistency in com-
mon concept creation and modification from multiple concept
domains. This contribution is novel to Computer Supported Coop-
erative Work (CSCW) area and is a natural extension of the dis-
cussion from syntactic consistency maintenance to semantic con-
sistency maintenance, which, traditionally, is only limited to pro-
viding solutions of shared application semantics. As collaboration
is more and more needed to support a common information space
where ubiquitous computing applications are presented and mu-
tual understanding of the exchanged information are required, the
research topic of this paper appears urgent and worth being paid
higher attention.

With the rapid development of Internet, we believe that the work
of this paper is not only a continuation of the existing collabora-
tive editing research but also very useful for emergent areas of e-

217

business, Semantic Web and Web 3.0. In future, its implementa-
tion work will be presented for a better illustration of this new
technology.

ACKNOWLEDGEMENT
This paper is partially supported by University of Macau Research
Grant No. RG055/08-09S/GJZ/FST.

REFERENCES
1. Agustina, Liu, F., Xia, S., Shen, H. and C. Sun (2008) Co-

Maya: Incorporating Advanced Collaboration Capabilities into
3D Digital Media Design Tools. In: Proc. of ACM CSCW’08
(Nov. 8–12, 2008, San Diego, California, USA), 5-8.

2. Begole, J., Struble, C.A., and C.A. Shaffer (1997) Leveraging
Java applets: Towards collaboration transparency in Java.
IEEE Internet Compuing 1(2):57–64.

3. Begole, J., Rosson, M. B. and C. A. Shaffer (1999) Flexible
collaboration transparency: supporting worker independence
in replicated application-sharing systems. Transactions on
Computer-Human Interaction 6(2):95-132.

4. Bergenti, F., Poggi, A. and M. Somacher (2002) A collabora-
tive platform for fixed and mobile networks. Communications
of the ACM 45(11):39-44.

5. Bellini, P., Nesi, P. and M.B.Spinu (2002) Cooperative Visual
Manipulation of Music Notation. ACM Transactions on Com-
puter-Human Interaction 9(3):194–237.

6. Brickley, D,, Guha, R. V. and B. McBride (2004) RDF Vo-
cabulary Description Language 1.0: RDF Schema. W3C Rec-
ommendation 10 February 2004, www.w3.org/TR/rdf-schema.

7. Dourish, P. (1996) Consistency guarantees: Exploiting appli-
cation semantics for consistency management in a collabora-
tion toolkit. In Proc. of the ACM CSCW’96, 268–277.

8. Edwards, W. K. (1997) Flexible conflict detection and man-
agement in collaborative applications. In Proc. of ACM
UIST'97, 139–148.

9. Edwards, W. K. (2005) Putting computing in context: An in-
frastructure to support extensible context-enhanced collabora-
tive applications. Transactions on Computer-Human Interac-
tion 12(4):446–474.

10. Ellis, C. A. and S. J. Gibbs (1989) Concurrency control in
groupware systems. In Proc. of the ACM SIGMOD Confer-
ence on Management of Data, 399–407.

11. Grune, D. (1986) Concurrent version system, a method for
independent cooperation. Report IR-114, Vrije University,
Amsterdam.

12. Guo, J. (2007) A Term in Search of the Infrastructure of Elec-
tronic Markets. IFIP Volume 255: 831-840.

13. Guo, J. (2008) Collaborative Concept Exchange, VDM Ver-
lag, Germany.

14. Hancock, s. M. Miller, J. D., Greenberg, S. and S. Carpendale
(2006) Exploring visual feedback of change conflict in a dis-
tributed 3D environment. In: ACM Proc. of the working con-
ference on Advanced visual interfaces, 209-216.

15. Klyne, G., Carroll, J. and B. McBride (eds) (2004) Resource
Description Framework (RDF): Concepts and Abstract Syntax.
W3C Recommendation 10 February 2004. [online]
http://www.w3.org/TR/rdf-concepts/.

16. Lantz, K. (1986) An experiment in integrated multimedia con-
ferencing. In Proc. of ACM CSCW'86, 267-275.

17. Li, D. and R. Li (2004) Preserving operation effects relation in
group editors. In: Proc. of ACM CSCW'04, 457-466.

18. McGuinness, D. and F. Harmelen (2004) OWL Web Ontology
Language Overview. W3C Recommendation 10 February
2004. [online] http://www.w3.org/TR/owl-features/.

19. Robinson, M. and L. Bannon, Questioning Representations, in:
Proc. ECSCW’91 (Amsterdam, September 1991), 219-233.

20. Schmidt, K. and L. Bannon (1992) Taking CSCW Seriously:
Supporting Articulation Work. Computer Supported Coopera-
tive Work 1(1): 7-40.

21. Shen, H. and C. Sun (2002) Flexible Notification for Collabo-
rative Systems. In: Proc. of CSCW'02, 77-86.

22. Sun, C., Jia, X., Zhang, Y., Yang, Y. and D. Chen (1998)
Achieving Convergence, Causality Preservation, and Intention
Preservation in Real-Time Cooperative Editing Systems. ACM
Transactions on Computer-Human Interaction 5(1): 63-108.

23. Sun, C.and D. Chen (2002) Consistency maintenance in real-
time collaborative graphics editing systems. ACM Transac-
tions on Computer-Human Interaction 9(1):1-44.

24. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H. and W. Cai
(2006) Transparent adaptation of single-user applications for
multi-user real-time collaboration. ACM Transactions on
Computer-Human Interaction 13(4): 531-582.

25. Tzitzikas, Y., Spyratos, N. and P. Constantopoulos (2005)
Mediators over taxonomy-based information sources. VLDB
Journal 14:112–136.

26. Vogel, J, Geyer, W., Cheng, L-T and M. Muller (2004) Con-
sistency Control for Synchronous and Asynchronous Collabo-
ration Based on Shared Objects and Activities. Computer Sup-
ported Cooperative Work 13(5-6):573-602.

27. Wiederhold G (1992) Mediators in the architecture of future
information systems. IEEE Computer 25: 38–49.

218

