
Syntactic File and Semantic File Alignment for E-
Business Document Editing and Exchange

Guangyi Xiao, Jingzhi Guo and Zhiguo Gong

Faculty of Science and Technology, University of Macau, Macau
{ya97409, jzguo, fstzgg}@umac.mo

Abstract - E-business document exchange is a very important
research topic in the field of e-marketplace. Heterogeneity of e-
business document syntax and semantics largely hinders the fu-
ture development of e-business document exchange and much
affects the automatic document processing, leading to e-business
automation unavailable. A semantic integration approach of
SFASFA is proposed to achieve semantic consistency on ex-
changed documents between heterogeneous e-business systems. It
creatively maps a universally meaningful concept onto a range of
a sequence of characters only readable by human. The imple-
mentation of SFASFAshows this approach is promising.

Keywords: e-business document, semantic file, syntax file, MVC,
WASIWAG, SFASFA

I. INTRODUCTION

E-business document exchange [7] is a very important re-
search topic in the field of e-marketplace [8], which is a com-
mon business information space where buyers and sellers
conduct business through electronic transactions. It studies
how e-business documents, such as inquiry sheet, offer sheet,
purchase order and shipping documents, can be well sent and
received between senders and receivers maintaining both syn-
tactic and semantic consistency, that is, document receiv ing
systems can semantically understand the sending systems'
meaning without semantic ambiguity. The current research
challenging problem is that existing e-business document sys-
tems are often heterogeneous , such that their document syntax
(i.e . formats) and semantics (i.e. meaning representation) are
different in their own contexts. The receiv ing parties (both
computers and human) cannot correctly interpret the meaning
carried by the received documents because sending parties and
receiving parties are in different semantic communities. Het-
erogeneity of e-business document syntax and semantics
largely h inders the future development of e-business docu-
ment exchange [7] and much affects the automatic document
processing [13][14][16], leading to e-business automation
unavailable.

By investigation, most existing document editors are syn-
tax-oriented only, for example, editors of Notepad, Acrobat,
Microsoft Word and Latex. They have no capability of han-
dling the meaning of their document content. However, busi-
ness communicat ion requires the exact meaning exchange to
avoid legal disputes, that is, the content of the received docu-
ments could be both computer-understandable and human-
understandable. To provide the feature of the meaning inter-
pretation, semantic document approach was proposed [4],

where ontology was often introduced either to model docu-
ment structure and partial content [21] or to annotate the
meaning of the document content [4]. Nevertheless, ontology
modelling of document structure and partial content cannot
resolve the problem of consistent meaning understanding be-
tween document sending and receiving parties on document
content because ontologies are only adopted to represent doc-
ument structure and partial contents and ontologies are often
heterogeneously designed by different designers . Similarly,
ontology annotation cannot enable the receiving computers to
understand the sending computers because annotations are
also designed in different contexts . Besides, annotation is a
labour-intensive work.

In our mot ivation, Carlos has a semantic document for in-
quiring to rent an apartment which can be separated to two
documents. One is a syntactic file understood by human, and
the other is a semantic file understood by automatic agent.
These two documents have some maps between a sequence of
chars and an element on semantic file. Carlos is going to mod-
ify this document for the additional requirements. To illustrate,
Carlos is looking for an apartment of at least 45m2 with at
least 2 bedrooms. However Carlos is going to modify this
requirement in the semantic document ed itor from only 2 bed-
rooms to only 2 bedrooms. Therefore, besides the modifica-
tion of semantic file, add chars and remove chars on syntactic
file with maps consistency is very important in the semantic
document editor.

This paper aims at resolving the above unsolved problem to
achieve semantic consistency on exchanged documents be-
tween heterogeneous e-business systems by proposing a novel
semantic integration approach of Syntactic File And Semantic
File Alignment (SFASFA). This approach creatively maps a
universally meaningful concept onto a range of a sequence of
characters only readable by human. By this approach, the re-
quirements for semantic consistency among document crea-
tors and document users are nicely achieved. The effect of this
approach enables semantically-consistent e-business docu-
ment representation and exchange.

The rest of the paper is organized as fo llows. Section II de-
scribes the related work. Sect ion III gives an overview of
SFASFA approach. Section IV implements SFASFA editor.
Finally, Section V draws a conclusion.

II. RELATED WORK

A. MVC Document Editing Model

2013 IEEE 10th International Conference on e-Business Engineering

978-0-7695-5111-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICEBE.2013.17

112

Document processing of editing often adopts MVC pattern
to characterize the processing with its layers as model, view
and controller [12]. The model layer is a declarative model of
how a document is represented and often in XML schema, the
view layer is a software interface fo r human to provide edit ing
input, and the controller layer is to orchestrate data manipula-
tions, interactions between the model and view layers, and
data submissions. MVC pattern is adequate to model the de-
sign of e-business document editor for document representa-
tion, editing and exchange.

B. WYSIWYG Editor
WYSIW YG, "the term 'what you see is what you get' has

been used to refer to the editing of fully formatted documents
so that every edit change causes the text to be updated imme-
diately to show the document as it would appear when printed,
thus eliminating the immediate step of (periodically) invoking
a formatter exp licitly" [11]. It has become a de facto standard
for most editor design such as Microsoft Word and Open-
Office. However, what you see does not necessarily leads to
what you get in real meaning as compared with that of the
content originator [15][20]. In our view and with regard to the
semantic mean ing, W YSIWIG is only important for the doc-
ument editor design in the aspect of user interface, but "what
agent sees is what agent gets" (WASIWAG) is more useful
than WYSIWIG when we consider a computer as an agent for
exact meaning interpreter of human. The term WASIWAG,
replacing W YSIW IG, could depict the current need of seman-
tic consistency between document creators and document
readers across different document systems.

C. Plaintext Editor
Plaintext editor [2] is a simple edit ing tool of a mature

technology early developed in 1960s , such as QED [3] and
Microsoft Notepad. It "regards the text on which it is operat-
ing as a single long string of characters". [3] The plain text of
a file uses a simple character set such as ASCII and Unicode
to represent numbers, letters, and a small number of symbols.
The only non-printing characters in the file, usable to format
the text, are newline, tab, and form feed. Any natural language
is naturally spoken as a sequence of words in sentences. Such
a sequence has often been modelled as a plaintext o f a single
long string of characters.

D. Ontology as a Semantic Media
With the development of ontology technology [6] and re-

lated RDF (w3.org/RDF/) and OW L (w3.org/OW L) ontology
languages, the semantic document approach of [4] suggested
that users be allowed to access knowledge in multiple ways
with consistent semantic meaning, apply ing existing ontolo-
gies developed in OW L or RDF. Particu larly, it adds semantic
capability to a document by annotating a document, structur-
ing a document and filling document with some domain con-
tent in ontologies.

Similar to the above approach, Tian et al [21] proposed to
intelligently process document by using ontology. It modelled
document structures and partial content in ontology. In docu-
ment industry, Microsoft adopted smart tags , a kind of ontolo-

gy, as the metadata of Microsoft documents to describe docu-
ment structures [18][19]. Ontology to construct semantic doc-
uments is useful but partial. First, it relies on the domain-wide
ontology and design-specific ontologies (such as annotation
ontology and document ontologies [4]). These ontologies can
only be applicab le in a specific domain and cannot support
cross-domain or cross-context semantic document interopera-
bility. Second, since there are many ontologies, different or-
ganizations might adopt their own-selected or designed ontol-
ogies. This will much prevent the semantic interoperability
between heterogeneous e-business systems.

E. Collaborative Concept
Collaborative conceptualization [9] is a latest technology to

construct collaborative concepts (or collaborative signs),
which are universally understandable between heterogeneous
contexts. Term designers collaboratively build common vo-
cabulary terms with unique identifiers on a co llaborative envi-
ronment. These terms are universal on unique common identi-
fiers, which are semantically consistent in meanings between
different natural languages. Local terms, uniquely identified
from different companies in a same natural language, are col-
laboratively mapped onto the common terms of the same natu-
ral language by companies who follow the g iven mapping
guidelines.

Collaborative concepts, compared with ontological terms,
have no semantic conflicts between cross -domain concepts
since they have already collaboratively mapped based on their
explicit definit ions. This paper will apply co llaborative con-
cepts to construct semantic nodes of a text document.

III. AN OVERVIEW OF SFASFA APPROACH

This section provides an overview of Syntactic File And
Semantic File A lignment (SFASFA) approach, shown in Fig.
1, to resolving semantic inconsistency problem between doc-
ument creation and use. This approach is described in a Model,
View and Controller (MVC) model, such that:

� Model, which is a layer of document modelling. It
models the structure of a context-free yet semantical-
ly-consistent document as a schema of a map file ,
which aligns the data from a syntactic file and a se-
mantic file. These two files will be discussed in Sec-
tion IV.

� View, which is a layer of user interface of document
editing on which users input data.

� Controller, which is layer responsible for orchestrat-
ing data manipulation and interaction between Model
and View. It maps data between human-readable syn-
tactic file and computer-understandable semantic file.

SFASFA approach shown in Fig. 1 provides a salient fea-
ture of semantic document editor design, that is, a semantic
link is naturally enabled between a human-readable syntactic
file contextual to a single semantic community and a comput-
er-understandable semantic file context-free for all semantic
communit ies. This has greatly utilized the existing mature
technologies of plaintext edit ing [2] and structured document

113

editing such as XML, which simplifies the new approach de-
sign of this paper. Technically, the creative feature of seman-
tic link has resolved the semantic inconsistency problem be-
tween document creators and document users in heterogene-
ous contexts.

FIG. 1: AN OVERVIEW OF SFASFA APPROACH

In the next section, we will show how a syntactic file and a
semantic file are semantically linked to solve the problem.

IV. SFASFA SEMANTIC LINK MECHANISM

To lay the theoretical foundation of establishing a semantic
link between a syntactic file and a semantic file, this section
first defines three editor modes of document editing and then
describes the semantic link mechanism between a syntactic
file and a semantic file.

A. Syntactic Editor Mode
A syntactic editor mode is the capability o f a document ed-

iting program that allows a document to be ed ited as a se-
quence of characters, in which a document is defined as a syn-
tactic file such that:

Definition 1 (Syntactic File). A syntactic file t is a se-
quence of characters Chars Ct,1…o, where o is the length of
Chars. Ct,k is the k-th Char in the sequence of Chars. Chars in t
distributed to a sequence of blocks Bt,1…q, where q is the
length of blocks. Each Char Ct,k must be assigned to bk-th
position of a block bt (bs, bl, Ct,bs…bs+bl) where bs is the start
position of t, bl is the number of Chars in the Bt,b and k = bs +
bk .

A syntactic file is a human-readable file and the characters
in the file can be any predefined format such as ASCII or
Unicode. In general, the file can be segmented into a number
of blocks. Yet, we may segment a file based on paragraphs for
simplicity and efficiency. Example 1 is such a treatment for a
syntactic file . Here, there are three blocks in the text file of
rental requirement from Carlos , ended with newline characters.
The 1st block begins at position 0 with length of 81. The 2nd

block begins at position 81 with length of 73. The third block
begins at position 154 with length of 38. The character “C”
from Carlos is located at position 4 in the 1st block.

EXAMPLE 1: SYNTACTIC FILE OF RENTAL REQUIREMENT FROM CARLOS
1. Carlos is looking for an apartment of at least 45m2 with at least 2 bed-
rooms.
2. If it is on the 3rd floor or higher, the house must have an elevator.
3. Also, pet animals must be allowed.

Under syntactic editor mode, there are three operations,
which are:

� Select Range, or SelectRange(t, rs, Ct,rs…rs+rl)

� Add Chars, or AddChars(t, k , Ca,1…al)
� Remove Chars, or RemoveChars(t, k , Ct,k…k+rl)

in which the Select Range operation selects a range rt(rs,
Ct,rs…rs+rl) by operating on a syntactic file t, where Ct,rs…rs+rl �
Rt is a sub-sequence of Chars in t, rs is the start position of the
range, rl is the length of the range, and rs+rl <= n (the total
length of t).

Add Chars and Remove Chars are two basic editing opera-
tions after Select Range operation. They are used to modify
the sequence of a syntactic file t such that Add Chars opera-
tion adds a sub-sequence of Chars Ca,1…al to a location k of t
and Remove Chars operation removes a sub-sequence of
Chars Ct,k…k+rl from position k with length of rl.

Example 2 shows the use of Add and Remove operations
on Example 1, where Remove operation removes “at least”
from the position 60 with the length of 8, and then adds “on-
ly” in the position 60 with length 4.

EXAMPLE 2: SYNTACTIC FILE AFTER THE OPERATIONS
1. Carlos is looking for an apartment of at least 45m2 with only 2 bedrooms.
2. If it is on the 3rd floor or higher, the house must have an elevator.
3. Also, pet animals must be allowed.

B. Semantic Editor Mode
A semantic editor mode is the capability o f a document ed-

iting program that allows a document to be edited as a set of
semantic nodes, in which each node is defined as a s mall
structured text fragment, such that:

Definition 2 (Semantic File). A semantic file s is a couple
(Ss, Ns), where N is a set of nodes in s and S is a node structure
model that associates nodes in s. Each node Ns,iid,term.def is an
entity, which must be uniquely identified with a concept/term
identifier iid � IID, which uniquely refers to a set of synony-
mous terms defined by a definition def.

In this defin ition, the structure S can be modelled in any
method such as graph, tree and hyper-graph. For each seman-
tic node uniquely identifying a meaning, there is a schema
defining the structure for all semantic nodes. Semantic file is
designed for both computer understanding and collaborative
vocabulary editing across heterogeneous domains. Its design
and creation follow the collaborative conceptualizat ion theory
[9], which is beyond the discussion of this paper. Th is paper
only uses the existing semantic file (i.e. a common vocabulary
or dictionary) discussed in [9][10].

The only relevant operation on semantic file in this paper is
Select Node or SelectNode(s, iid, term), which retrieves a term
together with the corresponding iid from a semantic node.

C. Mapping Editor Mode
The purpose of defining syntactic file and s emantic file is

to enable a semantic link between a range of syntactic file and
a semantic node of semantic file. In this subsection, we will
describe how the semantic link can be established and how
this link can be consistently maintained by introducing a map-
ping editor mode.

A mapping editor mode is the capability of establishing and
maintaining semantic link between a range of syntactic file
and a semantic node of a semantic file. This capability is de-
signed and implemented by assigning and editing a map be-

Model View

Syntactic
File

Semantic
File

[map]

Controller
Map
File

114

tween a range and a semantic node. The mapping result is
stored in a structure, called map file modelled as follows:

Definition 3 (Map File). A map file m is a couple (Mm, Nm),
where N is a list of nodes in m and M is a node structure mod-
el that associates nodes in m. Each node nm,k,iid,term � Nm is an
entity or relation, which must be marked with a position k ,
identified with a unique concept identifier iid � IID depend-
ing on the editing need, and optionally has a term.

In this paper, a map file is the editing target of a mapping
editor working on. It is a semantic link mechanism for con-
necting a range of a syntactic file and a semantic node of a
semantic file.

There are some basic operations in mapping editor mode,
which we will discuss in later parts.

D. Establish and Maintain Semantic Link between Syntactic
File and Semantic File

In this subsection, we will elaborate how a semantic link
between a syntactic file and semantic file is established and
maintained.

1) Mapping between a range of a syntactic file and a seman-
tic node of a semantic file

To enable a semantic link between a range of a syntactic
file and a semantic node of a semantic file, we design a map-
ping mechanism, as shown in Fig. 2. In this Figure, a selected
range of a syntactic file is mapped onto a selected node of a
semantic file through the operations of Select Range, Select
Node, Assign Map and Add Map.

Fig 2: Mapping a selected range onto a semantic node for a map file

Formally, any map node constructed for a map file m in Fig.
2 builds a bi-transitive link for a meaning such that:

nm,k,iid,term := (rt,k,rl, ns,iid,term,def)
where rt,k,rl =sem ns,iid,term,def. Here, rt,k,rl is a range of syntactic
file t with position k and length rl, ns,iid,term,def is a semantic
node with unique identifier iid referring to a term defined by
def in a semantic file s, and =sem is a semantic equivalence.

Particularly in Fig. 2, the operation sequence of establish-
ing a semantic link is as follows:
1) AssignMap returns a temporary empty map, such that:

map ::= <term iid = ""pos = ""/>,
where the model o f the map structure M is formally defined as:

Definition 4 (Map Structure). A map-based map structure M
is the structure model for a map mm of a map file m, such that:

M ::= term(iid, pos).

2) SelectNode(s, Cs,1...rl) returns iid and term.
3) SelectRange(t, k , term) returns k and rl.
4) AddMap(k , rl, iid) adds content to the assigned map and

also adds assigned map mm to map file m, such that:

map mm ::= <term iid="iid" pos="k">rl-string</term>.

Through the above operation sequence, a map is, in fact, an
instance of a map structure M, such that mapping informat ion
from a syntactic file and a semantic file is aligned in the map.
It applies the position number "pos" of a range to link an iden-
tifier "iid" of a semantic node. "term" can be optionally ap-
peared in the instance map structure depending on the actual
design of displaying a syntactic file t on user interface.

EXAMPLE 3: ASSIGN AND ADD MAPS FOR A SYNTACTIC FILE

In Example 3, we can see that when a document creator
writes a text up to "apartment", "elevator" and "pet", he would
like to establish semantic links with semantic nodes in a se-
mantic file. So, he executes the mapping process shown in Fig.
2 and creates the maps as shown in Example 4, where "pos"
indicates the start position of a range.

EXAMPLE 4: AN ADDED MAP TO A MAP FILE
map := <term iid="201204251013302141" pos="28">apartment</term>
map := <term iid="201204251013427282" pos="144">elevator</term>
map := <term iid="201204251013361706" pos="163">pet</term>
It is worth mentioning that in Example 4, each iid for a

term is collaboratively defined in a semantic file s without
ambiguity fo llowing collaborative conceptualizat ion theory
[9]. For example, “201204251013302141” means “a set of
rooms for living in and usually on one floor of a large build-
ing”, “201204251013427282” means “a device that carries
people or cargo up and down inside buildings ”, and
“201204251013361706” refers to “an animal kept for amuse-
ment or companionship”.

It is obvious that Example 4 has established three semantic
links between a semantic file and a syntactic file. Th is link
makes a meaningless character sequence meaningful and
common to all user parties.

The effect of the above mapping provides a feasible solu-
tion to bridge a human-readable-only file and a computer-
understandable file and hence enables computer-mediated
cross-domain document exchange between context-dependent
document users.

2) On-editing map consistency maintenance
However, a map file will not always keep static because the

positions "pos" in a map file change when Add(t, k , al, Ca,1…al)
and Remove(t, k , rl, Ct,k…k+rl) operations are executed on a
syntactic file t and subsequently on its map file m. The dy-
namic edit ing reality asks us for a solution to resolving this
on-editing map consistency between changed ranges of t and
their corresponding maps in m.

Our method on the problem, shown in Fig. 3, is to add a
function of consistency maintenance for maps on editing,
called Maintain On -Editing Map operation, to reconcile the

115

offsets to "pos" for the existing maps of m after new Add and
Remove operations on maps are executed.

More formally, on-edit ing map consistency maintenance
method is a sequence of operations as follows:
1) SelectRange(t, k, rl) selects Ct,1...rl from user interface

(i.e. t) and returns (k, Ct,1...rl, iid).
2) SelectNode(s, iid, term) selects a semantic node

ns,iid,term,def from the semantic file s, return (iid),
where term is used to retrieve the semantic node from the
semantic file.

3) AddMap(m, k, rl, iid) adds a map mm to m. This opera-
tion has to have a non-zero iid.

4) RemoveMap(m, k) removes a map mm from m. For this
operation, whenever k falls in a map, the map is removed.

5) AddChars(t, k, Ca,1…al) adds Chars to user interface (i.e. t)
and returns (k, al). AddCharsInMapFile(m, k, rl) to rec-
oncile the offsets of pos on map file m when Chars with
rl is added on the syntax file t. Th is operation is automat-
ically acted after the operation AddChars(t,k ,Ca,1…al).

6) RemoveChars(t, k, Ct,k…k+rl) removes Chars from user
interface (i.e . t) and returns (k, rl). RemoveCharsIn-
MapFile(m, k, rl) to reconcile the offset pos on map file
m when Chars with rl is removed on the sytax file t. Th is
operation is automatically acted after the operation Re-
moveChars(t,k ,Ca,1…rl).
These two operations have iid = 0 by default.

7) MaintainOnEditingMap(m) reconciles the offsets af-
fected by the operations of AddCharsInMapFile(m, k , rl),
AddMap(m, k , rl, iid), RemoveCharsInMapFile(m, k , rl)
and RemoveMap(m, k).

Fig 3: An on-editing map consistency maintenance method

For the above operation sequence, operations of Add Chars
In Map and Remove Chars In Map may insert or remove par-
tial content in a map mm. However, the operation of Add Map
or Remove Map either adds an entire map or removes an en-
tire map. Anyway, both affect the offset changes in other
maps and need reconciliat ion. In practice, as in our paper, the
operation of Maintain On-Editing Map is implemented in Add
and Remove operations . Please see Section V.

EXAMPLE 5: EFFECT OF ADD AND REMOVE OPERATIONS

Example 5 (in red) shows the effect of removing “at least”
and adding “only” where position offsets are re-computed.

3) On-replace map consistency maintenance
There is another type of consistency problem, which hap-

pened at users' side. When a user receives a document, h is
systems may adopt a synonymous term, which is prevalent in
his company, to rep lace a common term. For example, he may
use "fridge" to replace "refrigerator". This is absolutely legal
when the local term has already built a semantic link between
"refrigerator" and "fridge" such that map[(refrigerator, 12345),
(fridge, 45678)]. Under the ready mapping mechanism of
above, the biggest possibility is that a local system will auto-
mat ically rep lace terms without notice. This triggers another
consistency problem such that for every term replacement, the
offset referring to the replacement position must be re-
computed in order to reconcile the offset problem.

We offer a solution to the above-mentioned problem by
providing a new function for consis tency maintenance, call
On-Replace Map operation. When an iid-ed map of m detects
a request for replac ing the map content, it will execute a fo l-
lowing operation sequence:

1) Check the existence of map[(iid,term), (localIid, lo-
calTerm)]

2) ReplaceMap(M, localIid, localTerm) to replace iid
and term of a map in m.

3) MaintainOnReplaceMap(m) reconciles the offsets af-
fected by the operation of ReplaceMap(M, localIid,
localTerm).

By the operation sequence, inconsistency problem caused
by local replacement of terms is resolved.

E. Map File Segmentation
Section IV.D has provided a baseline solution to build

maps in a map file m. This solution regards the entire map file
as a large block accommodated with many small maps. In the
sense of efficiency, it requires changes for all offsets to the
map positions after a map is changed (i.e. Add, Remove or
Modify). Intuitively, we feel if we segment the entire map file
m into some blocks and maintains maps in a block using rela-
tive position to the block position, we can immediately reduce
the computation for offset changes.

In this subsection, we will remodel the map structure M of
a map file defined in Defin ition 4 by segmenting a map file m
into many blocks, in which each block consists of many maps,
such that:
Definition 5 (Extended Map Structure). A block-based map
structure M' is a structure model for blocks bm of a map file m,
such that:

M' ::= block (term(iid, pos)*).

In XML format, the extended map structure M' is defined
as follows:
<!ELEMENT XpmDoc (block*)>
<!ELEMENT block (map*)>
<!ELEMENT map EMPTY>
<!ATTLIST map pos CDATA #REQUIRED iid CDATA #REQUIRED>
<!ATTLIST block pos CDATA #REQUIRED>

116

which is used for SFASFA approach implementation in this
paper.

Example 6 shows an instance of the extended map structure,
which group maps in blocks, where block position is an abs o-
lute position and a map has relative position to block position.

EXAMPLE 6: AN INSTANCE OF EXTENDED MAP STRUCTURE

In the next section, we will implement the SFASFA editor..

V. SFASFA EDITOR IMPLEMENTATION

The architecture of SFASFA Editor is a system to control a
text editor QTextEdit from QT SDK and our SFASFA control
to access our map file model. Fig 4 shows the GUIs of how to
add and remove a map.

Fig 4: Add and Remove Map Operation

Fig 5 shows the text input when we input “pet” in the text
editor for example. It shows a dropdown list for selecting a
semantic node to assign a map between “pet” to a semantic
node “pet” with iid 201204251013361706 and annotation “An
animal kept for amusement or companionship”.

Fig 6: Semantic Node Input Operation

VI. CONCLUSION

E-business document exchange is a very important research
topic in the field of e-marketplace. The SFASFA approach
developed in this paper is a feasible solution of aligning any
syntactic character sequence with any identified semantic
concept. It has also reconciled the semantic conflicts of on-
editing text changes by dynamically mapping any syntactic
text onto any semantic node. In editor design, it has combined
the pre-existing text editor controls with the newly designed
map model controls by a well-known MVC editor framework.
This design has highly reused the existing text editor controls

and makes editor implementation easier. The implementation
result shows that SFASFA editor is promising for applying to
the e-business document exchange.

REFERENCE
[1] Berners-Lee, T . et al., "The semantic web," Scientific American, vol.

284, pp. 28-37, 2001.
[2] Dam, A. and Rice, D. On-line Text Editing: A Survey. Computing

Surveys, vol. 3, no. 3, Sep 1971, pp. 93-114.
[3] Deutsch L. and Lampson, B. An online editor. Communications of the

ACM, vol. 10, no. 12, Dec 1967, pp.793-803.
[4] Eriksson, H. The semantic-document approach to combining

documents and ontologies. International journal of human-computer
studies, vol. 65, 2007, pp. 624-639.

[5] Fan, K., Li, N., Wu, Q. and Liu, X. A Framework of On-line Office
Document Processing Tool Based on XForms. In: Proc. IEEE Int 'l
Conf. on Software Engineering and Service Sciences (ICSESS 2010),
2010, pp. 237-241.

[6] Gruber, T ., A Translation Approach to Portable Ontologies. Knowledge
Acquisition 5(2), (1993)199-220.

[7] Guo, J. Inter-enterprise business document exchange. Proc. of 8th Int 'l
Conf. on Electronic Commerce (ICEC 2006), ACM, 2006.

[8] Guo. J. Business-to-business electronic market place selection,
Enterprise Information Systems, vol. 1, pp. 383-419, 2007.

[9] Guo, J. Collaborative Conceptualization: Towards a Conceptual
Foundation of Interoperable Electronic Product Catalogue System
Design. Enterprise Information Systems 3(1), 2009, pp. 59-94.

[10] Guo, J., Xu, L., Xiao, G. and Gong, Z. Improving Multilingual
Semantic Interoperation in Cross-Organizational Enterprise Systems
through Concept Disambiguation. IEEE Transactions on Industrial
Informatics. 8(3) Aug 2012, pp. 647-658.

[11] Hatfield, D. The coming world of “what you see is what you get”. Proc.
Joint Conference on Easier and More Productive Use of Computer
Systems, ACM SIGSOC Bulletin, vol. 13, no. 2-3, 1982, pp. 138.

[12] Hou, X., Li, N., T ian, Y. and Yang, H. A Framework based on MVC of
Document Processing. In: Proc. 4th Int 'l Conf. on Cooperation and
Promotion of Information Resources in Science and Technology
(COINFO'09), IEEE, 2009, pp. 290-294.

[13] Krishna, V. ; Bailey, J. ; Lelescu, A. Intelligent Document Gateway - A
Service System Analysis. In: Proc. IEEE Int 'l Conf. on Services
Computing (SCC 2007), 2007, pp. 636-643.

[14] Kuo, C-H., Shih, T .K., Chui, H-S. and Sung, L-C. Design and
implementation of a multimedia document automation system. In: Proc.
IEEE International Conference on Intelligent Processing Systems
(ICIPS'97), Vol. 2, 1997, pp.1697-1701.

[15] Lawton, G. The grand delusion: What you see is not what you get.
New Scientist, No. 2812, May 16, 2011.

[16] Mital, D. and Leng, G.W. Text segmentation for automatic document
processing. In. Proc. IEEE Conf. on Emerging Technologies and
Factory Automation (EFTA'96), Vol. 2, 1996, pp. 642-648.

[17] N. F. Noy, et al., "Creating semantic web contents with protege-2000,"
Intelligent Systems, IEEE, vol. 16, pp. 60-71, 2001.

[18] Ontoprise, 2003. OntoOffice Tutorial. Ontoprise GmbH. URL:
http://www.ontoprise.de/documents/tutorial_ontooffice.pdfi.

[19] Tallis M., "Semantic word processing for content authors," in
Proceedings of the Knowledge Markup & Semantic Annotation
Workshop, Florida, USA, 2003.

[20] Tabackneck, H. and Simon, H. What You See Is What You Get- but do
you get what you see? In: CHI'94 (Boston, Massachusetts USA, April
24-28), 1994, pp. 293-294.

[21] Tian, Y., Li, N., Hou, X. and Liang, Q. Intelligent Processing Based on
Ontology for Office Document. In: Proc. International Conference on
Information Engineering and Computer Science (ICIECS 2009), IEEE,
2009, pp. 1-4.

117

