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Abstract— Virtual money exchange theory proposed in [6] is 

an important theory on finding a set of exchange rates between 

virtual currencies in rapidly-developed research area of virtual 

worlds. However, due to mathematical limitation of the 

employed algorithm, the equation solvability problem emerges 

in the computation of different virtual exchange rates. This 

paper provides a solution to identify the solvability problem in 

the virtual money exchange system and an algorithm to solve 

this problem by minimally removing unmatched supplies. 

Evaluation result shows that with this algorithm, the 

transaction histories can be maximally reserved for the sake of 

future exchange rate prediction. 
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I.  INTRODUCTION 

Virtual money exchange theory (VMX theory) proposed 
by Guo et al [6] is an important theory on finding a set of 
exchange rates between virtual currencies in rapidly-
developed research area of virtual worlds. It proves the 
existence of a common value system and builds a virtual 
money exchange regime (VMX regime) to allow virtual 
wealth freely flow among virtual worlds in an efficient 
manner. Based on the common value system, a virtual 
exchange rate algorithm (VERA) is designed for 
implementing this VMX theory, which is a computational 
instrument calculating the exchange rates among a handful 
of virtual currencies. VMX theory and VERA is proved 
correct in [6] from economics perspective. Nevertheless, it 
has not looked into the mathematical level of some 
properties, that is, whether a solution is solvable. 

VERA models the virtual currency exchange calculation 
into a linear system to calculate the exchange rates. Due to 
linear system’s intrinsic properties, the equations in the 
virtual money exchange system (VMX system) are not 
always mathematically solvable. Based on the given 
supplies and demands of virtual currencies for exchange in 
the market, we may not able to find a solution for each 
exchange rate involved. If we cannot guarantee a 
deterministic equation solution in the VMX system, the 
practicability of VMX regime will be weakened. 

In VERA, an exchange rate between any two currencies 
is not calculated as intuitively as only with the supply and 
demand between two involved currencies. Instead, the 
calculation requires equating the aggregated selling of one 
currency to buy other currencies with the aggregated buying 

of that currency by selling other currencies. This 
computation based on Pareto optimization is excellent to 
achieve exchange fairness, yet mathematically it is complex 
in determining when equations are solvable. For example, 
when we find a solution of the linear system is unsolvable at 
time (say, time slot t) of computing exchange requests, 
should we simply discard all the requests (time slot t) for 
this batch of computation and proceed to the next batch 
(time slot t + 1)? In this paper we find that there is still some 
space left in improving the existing virtual currency 
exchange rate calculation procedure. 

This paper aims at examining the solvability problem 
appeared in VMX [6]. After investigation, it finds that the 
problem is causally related to the existence of unmatched 
supplies in supply relation. To generalize the problem, it 
modeled the problem as a directed cycle identification in a 
virtual money exchange graph (VMX graph). Through this 
modeling, an algorithm called unmatched supply removal 
algorithm (USRA) is proposed to identify and remove the 
unmatched supplies. This new algorithm can be safely 
integrated into VERA without affecting the original goal of 
fairness in VMX theory. 

The rest of the paper is arranged as follows. Section II 
reviews VERA and models it in a directed cycle graph. 
Section III describes the newly discovered unmatched supply 
problem. Section IV provides some formal definitions for the 
new solution. Section V analyzes the exchange rate 
solvability. In section VI, the condition of unmatched supply 
problem is identified. Section VII, a resolution algorithm is 
designed and integrated into VMX systems. Section VII 
shows the correctness and evaluates the impact to market 
trend analysis with simulations. Finally, a conclusion is made 
and some contributions are enumerated. 

II. RELATED WORK 

A. VERA Algorithm 

In VERA, the virtual money exchange rates can be 
computed  through either sellers’ exchange requests (i.e., 
sell-lead) or buyers’ exchange requests (i.e., buy-lead) [6] 
without difference. In the sell-lead computing, one user 
makes an exchange requests by selling a certain amount of 
specified currency x (sxy) for exchanging back some 
unknown amount of currency y (udxy), as formulated in (1), 
such that given any two currencies cx and cy, cx trades back 
the units of cy through the exchange rate exy. To remove udyx 



and reduce the number of variables, a common virtual 
money c0, called VONEY, is introduced as an intermediate 
virtual currency. Consequently, ex0 refers to a conceptual 
exchange rate from currency x to VONEY. This transforms 
(1) to (2).  
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The expansion of (2) is (3), where each virtual world is 
assumed to have one virtual currency, such that all virtual 
currencies C = {c1, c2, ..., cx, ..., cy, ..., cn}. (2) and (3) 
achieve the Pareto optimization and guarantee that all 
exchange rates exy are fair. 
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The computation of (3) can be converted to solving a 
linear system problem, shown in (4), by finding the solution 
of a matrix A, where all ex0 are variables that have to be 
solved with coefficients mapped to the elements of A. The 
linear equations in (3) are homogeneous, which implies that 
there are infinitely many solutions [7]. However, the actual 
rate we are looking for is a relative exchange rate between 
two virtual currencies, cx and cy, such that it can be obtained 
via exy = exo / eyo. Thus, the value of exo never has to be 
computed.  
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For computational purpose, the system matrix A is 
transformed into the reduced row echelon form (RREF) A’ 
as in (5). Each column i represents the intermediate 
exchange rate (ei0) from currency i to VONEX. After 
transformation, each exchange rate can be easily calculated 
either by the relative value of two non-zero columns in the 
same row or by the transition between two exchange rates. 
For example, e1n = e10 / en0 = 1 / b1, e2n = e20 / en0 = 1 / b2, 
and then e12 = e1n / e2n = b2 / b1. 
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B. Directed Cycle Identification 

The VMX system is modeled as a directed graph GE(V, 
E) with currencies being the vertex set V and currency 
supplies being the edge set E (e.g., Sxy). With VMX graph, 
the solvability problem can be converted to a topological 
problem identifying directed cycles in GE. 

This topological problem can be addressed with at least 
two approaches. One approach models it as the problem of 
enumerating all elementary circuits in a directed graph. In 
particular, let G be a graph of n vertexes (v1, v2, ..., vn). A 
path from vertex v1 to vertex vm contains a sequence of 
vertexes (v1, v3), (v3, v6), ..., (vi, vk), (vk, vm) in which the end 
of an edge is the start of the next edge. An elementary path 
contains no vertex at twice. If the start point and end point 
of a path is the same vertex, this path constitutes an 
elementary circuit. A body of work [13], [14], [15], [9] 
proposed different algorithms to enumerate all elementary 
circuits with a given graph.  

Another alternative approach models the problem as 
enumeration of all strongly connected components. In a 
directed graph, a path containing the start and end which is 
the same vertex is called a directed cycle. A graph can be 
divided into arbitrary sub-graphs. If a sub-graph contains the 
maximal number of vertices which are all connected and 
form directed cycles, it is a strongly connected component 
[1]. The problem of finding all strongly connected 
components has been widely studied ranging from 
conventional computing to newly emergent parallel 
computing. Tarjan’s algorithm [12] can accomplish the 
enumeration in O(|V| + |E|) with one stack. Kosaraju's 
algorithm [11] uses graph transpose to make the concept of 
the algorithm much simpler. This solution is useful in 
topological sorting, but increases the complexity in 
implementation. Path-based strong component algorithms 
[3], [2], [4] achieve linear time complexity constraint by 
employing two stacks, increasing space complexity. 
Recently, [8] and [10] seek solutions in parallel computing 
to achieve sub-linear time constraint.   

Comparing the above two approaches, we prefer the 
second approach for the reason that it requires much less 
time complexity constraint than the elementary circuit-based 
approach. The algorithm in [12] is chosen for simplicity 
purpose. 

III. THE SOLVABILITY PROBLEM 

By observation, the solvability problem is related to the 
matching of supplies among all currency supplies. We use 
some examples to elaborate this problem. In the first 
example (Figure 1), currency C does not have any incoming 
supply. (6) represents the RREF of this exchange. 

 
Figure 1. A Three Currencies Scenarios, scenario (a) and scenario (b) 
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The intermediate exchange rates from (6) are eA0 = 0, 
eB0= 0, and eC0 arbitrary. Apparently, none of them is 
effective. 

The above problem can be fixed by eliminating currency 
C in the exchange rate computation. However, the next 
examples collectively show a more complicated scenario by 
adding one more currency (currency D) into the exchange. 
Figure. 2 shows three possible VMX graphs. Likewise, the 
corresponding RREF matrices are in (7a), (7b), and (7c). 

 
Figure. 2 Four Currencies Scenarios, Scenario (a), Scenario (b), and 
Scenario (c) 

 Observed from the RREF of the examples, the 
solvability of them differs related to the existence of supply 
SCA and the supply SBD. The exchange rate eAB and eCD can be 
derived from matrix (7a) while others, eAC, eBC,  eAD, eBD, are 
not available. Once the supply SCA is introduced (Figure. 2 
(b)), (7b) shows that only the exchange rate eAB can be 
solved while the intermediate exchange rates eC0 and eD0 are 
both equal to zero. After introducing SBD (Figure. 2 (c)), 
surprisingly, all the exchange rates are available thought the 
opposite supplies SCA and SDB are not raised. 

1 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0

 
 


 
 
 
 

   (7a) 

1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 
 
 
 
 
 

   (7b) 

1 0 0 1

0 1 0 1/ 2

0 0 1 1/ 2

0 0 0 0

 
 


 
 
 
 

  (7c) 

We characterize the solvability problem as follows. 
Firstly, orphan currency (from a currency there exists only 
incoming or outgoing supply) is a sufficient condition 
leading to the solvability problem, but not a necessary 
condition. Secondly, orphan supply (from a currency pair 

there existing only one direction of supply) is a necessary 
condition but not sufficient to the solvability problem. 
Thirdly, removing orphan currencies can solve the 
unmatched supply problem caused by orphan currency. 
Fourthly, removing orphan supplies may not correctly solve 
the problem. The last property can be illustratively proved in 
Figure. 3 in which only the removal of orphan supply SDA is 
a valid solution. 

 
Figure. 3 A Five Currencies Scenario 

IV. FORMAL DEFINITIONS 

Before generalizing the solution, we restrict the problem 
scope by formally defining the system and the problem as 
preliminary work. 

Definition 1. Exchange rate exy represents an exchange of 
selling e unit of currency x for currency y. Exchange rate exy 
has the following properties. 

 Duality Property: If exy exits, eyx must also exist; 

 Transitivity Property: If exa, exb, ..., eiy exist, then exy 
= exa ∙ eab ∙ ebc ∙ ... ∙ eiy. The ordered set {exa, exb, ..., eiy} 
from currency x to currency y is called a chain; 

 Reflexivity Property: exx = 1; 

 Non-symmetry Property: exy ≠ eyx and specifically, exy 
= 1 / eyx; 

 Non-negation Property: exy ≥ 0. 
Definition 1’ (Basic Exchange Rate). Exchange rate ex0 

representing a rate from currency x to VONEY is called a 
basic exchange rate. 

Definition 2 (Requested Exchange Rate). An exchange 
rate exy is called requested exchange rate if there exists a 
virtual currency supply from virtual currency x to virtual 
currency y.  

Definition 2’ (Virtual Money Exchange Transaction or 
VMX Transaction). All the requested exchange rates 
compose a virtual money exchange transaction or VMX 
transaction, denoted by R. 

Definition 3 (Implicit Exchange Rate). An exchange rate 
exy is called implicit exchange rate if there is no virtual 
currency supply from virtual currency x to virtual currency y. 
Implicit exchange rate set U contains all implicit exchange 

rates such that R ∩ U = 
Implicit exchange rate is identified and calculated with 

transition of requested exchange rates. For example, if 
requested exchange rates eab, ebc, ecd exist and there is no 
supply Sad, then the implicit exchange rate ead is calculated 
through the chain ead = eab ∙ ebc ∙ ecd. If one requested 
exchange rate in the chain does not exist, neither does the 
implicit exchange rate. 
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Definition 4 (Exchange Rate Ensemble). Exchange rate 
ensemble is the union of requested exchange rates and 

implicit exchange rates: E = R  U.  
Definition 5 (Zero Basic Exchange Rate). ex0 is called 

zero basic exchange rate if ex0 = 0. Z denotes a set of zero 
basic exchange rates. 

Definition 6 (Free Basic Exchange Rate). ex0 is a free 
basic exchange rate if ex0 has arbitrary value. F denotes a set 
of free exchange rates. 

Definition 7 (Solvable Exchange Rate). An exchange 
rate exy is solvable if its basic exchange rates ex0 and ey0 are 
neither zero nor free. A solvable Exchange rate set S 
includes all the solvable exchange rates in a transaction. 

Definition 8 (Tangible VMX Transaction). A virtual 

money exchange transaction is tangible if R  S. 
Definition 9 (Totally Solvable VMX Transaction). A 

virtual money exchange transaction is totally solvable if E  
S. 

Definition 10 (Solvability Problem). There exists at least 

one requested exchange rate exy R with basic exchange 

rates ex0 and ey0. If (ex0F) (ey0F) returns true 

then the system matrix A is regarded as unsolvable
Definition 10 restricts the solution scope with only 

tangible transactions which consist of requested exchanges 
In VMX graph, they are explicitly marked as directed edges. 
To solve the problem, firstly, we need identify the exchange 
solvable condition. 

V. EXCHANGE RATE SOLVABILITY CHARACTERIZATION 

We model the virtual currency supply relation as 
directed graph to identify the solvablility condition. 
Formally, let V be the set of virtual currencies on the market 
for exchange, |V| > 1, E be the set of supplies of any two 
virtual currencies. Then the VMX graph denoted by GE(V, 
E) is a directed graph (or digraph) representing all supplies 
between different currency pairs. A directed cycle in GE is a 
sequence of traversable edges such that the end of the last 
edge and the start of the first edge is the same vertex, 

namely (v1, v2), (v2, v3), ..., (vk, v1) and v1, v2, v3, ..., vk  V. 
Lemma 1. If a virtual currency exchange rate exy exists, 

there must exist a directed cycle between currency x and 
currency y. 

The proof of Lemma 1 can be easily deduced from the 
duality property in Definition 1, Definition 2, and the 
chained exchange rate calculation in Definition 3. 

Definition 11 (VMX Graph Strong Connectivity). For 

any supply Sxy from currency x to currency y, x  V, y  V, 
there always exists a directed cycle which contains vertex x 
and vertex y, then the VMX graph GE is strongly connected. 

Based on Lemma 1 and Definition 11, we can derive the 
following theorem to infer the total solvability of a VMX 
transaction. 

Theorem 1. A virtual money exchange transaction is 
totally solvable if and only if GE is strongly connected. 

Most of the time Theorem 1 is too strong to be practical, 
because the entire VMX graph is not always strongly 
connected. Fortunately, we only need a tangible solution 

according to Definition 10, which is a subset of the totally 
solvable solution. The tangible solution will be discussed in 
the next section. 

VI. UNMATCHED SUPPLY IDENTIFICATION 

In a VMX graph, a strongly connected component [1] FE 

is a sub-graph of GE (denoted by FE s GE) It contains the 
maximal set of vertices from which any two vertices are 
strongly connected. A VMX graph GE contains at least one 
strongly connected component. If a GE is not strongly 
connected, it can be partitioned to two or more strongly 
connected components. According to the reflexivity property 

of in Definition 1, each vertex v  V implicitly has an arc 
pointing to itself forming a directed cycle. Thereby, a 
strongly connected component can be as small as containing 
only one vertex. For any supply Sxy, if its vertex currencies, 
currency x and currency y, belong to the same directed 
cycle, then Sxy belongs to a single strongly connected 
component. 

Theorem 2. In a VMX transaction R, if and only if each 
supply Sxy belongs to a single strongly connected 
component, transaction R is free from solvability problems. 

The approach to identify the solvability problem can be 
deduced from Theorem 2 in the form of the following 
corollary. 

Corollary 1. For a supply Sxy  V in GE(V, E). If x V1 

in FE1(V1, E1), y V2 in FE2(V1, E1), V1  V, V2  V, and 
V1 ≠ V2, then GE will have a solvability problem and the 
supply Sxy for the request of (Sxy ∙ exy) is an unmatched 
supply. 

Now the problem becomes how to identify and remove 
the unmatched supplies from a VMX graph. 

VII. SOLUTION AND ALGORITHM DESIGN 

A. Unmatched Supply Removal Algorithm 

With Corollary 1, we provide an algorithm called 
unmatched supply removal algorithm (USRA) to identify 
and remove all unmatched supplies with the following steps. 

1) Firstly we check the connectiviy of the VMX 
graph. If all the edges are directly or transitively 
connected, then a totally solvable VMX transaction 
can be straightforwardly obtained based on 
Theorem 1. 

2) If the VMX graph is not strongly connected, a set 
of strongly connected components F are identified 
from GF. For a supply Sxy, its vertices in in GE will 
be inspected whether they belongs to the same 
strongly connected component(Corollary 1). If 
they do not, Sxy will then be marked unmatched 
supply. 

3) If a supply Sxy is marked unmatched supply, it will 
be removed from the VMX transaction R.  

The process will search and remove all unmatched 
supplies by enumerating all supplies in step (2) and step (3). 
The key point of algorithm design is to find an approach to 
identify all the strongly connected components in GE. We 
employed Tanjan’s algorithm [12] to achieve the objective. 



B. Integration into Virtual Exchange Rate Algorithm 

(VERA) 

Firstly, we study the impact of the unmatched supply 
removal on the original virtual exchange rate algorithm 
(VERA). Apparently if we remove the unmatched supplies 
at that point, the Pareto optimal has been shifted to a new 
point and the intrinsic value and extrinsic value are 
temporarily unequal [6]. In this case, the redistribution has 
to be applied once more by seeking a new set of exchange 
rates reflecting the new Pareto optimal point. It is evident 
that the unmatched supply removal before one Pareto 
optimal point search yields the same result as plugging 
USRA between two Pareto optimal point searches. (The 
proof can be found in [5].) We can then integrate USRA as a 
preprocess of VERA. Figure. 4 illustrates the algorithm 
integration in flowchart. 

After calculating the requested exchange rates, the 
implicit exchange rates can be calculated subsequently. 
Calculating implicit exchange rates extends the tangible 
solution to the totally solvable solution as close as possible. 
The implicit exchange rates can be transitively calculated 
with requested exchange rates as formulated in Definition 3. 

 
Figure. 4 Algorithm Integration Flowchart 

VIII. EXPERIMENTS AND EVALUATIONS 

To simulate USRA, we modified our virtual money 
exchange simulator (VMX simulator) [16] by following the 
flow in Figure. 4. For comparison, computations will abort 
as long as a zero basic exchange rate or an arbitrary basic 
exchange rate occurs, and all the supplies at this transaction 
will be discarded in the original VERA implementation. 
Apparently without USRA, lots of exchanges will be 
discarded and fewer history data can be collected. 

A. Single Exchange Rate Computation 

This experiment validates the implementation of USRA 
in our VMX simulator. Figure. 5 shows a virtual currency 
exchange process without USRA (Figure. 5(a)) and with 
USRA (Figure. 5(b)). In this experiment, we deliberately 
generated requests with 6 supplies and different amount in 
each supply. In the exchange, supply SDA is identified as an 
unmatched supply. In Figure. 5(a), only 6 exchange rates 
were obtained. Exchange rates eDE and eED were not 
obtained due to solvability problem. Once the unmatched 
supply SDA was removed, the number of obtained exchange 
rates is increased up to 8 (Figure. 5(b)). 

This experiment not only verifies the correctness of 
USRA, but also implies that with USRA exchange rates can 
be maximally retrieved after removing unmatched supplies. 
The result set includes requested exchange rates as well as 
implicit exchange rates, enriching the market trend analysis 
which will be discussed in the next experiment. 

 
Figure. 5 Unmatched Supply Removal Demonstrations in VMX Simulator 

B. Influence to Market Trend 

In this experiment, a series of virtual currency exchange 
requests are consecutively generated and computed within a 
given period. This experiment studies the influence of 
problem solving on transaction histories collected for 
market trend analysis.  It was also be run in our VMX 
simulator [16]. 

(a) Exchange Rate Computation without USRA 

(b) Exchange Rate Computation with USRA 
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TABLE 1 lists the experiment parameter. Totally 5 
virtual currencies are involved throughout the experiments. 
The average number of request is around 10 in each time 
slot. This experiment will last 100 time slots. In each time 
slot, requests are randomly generated and then aggregated 
by the supply currency and demand currency. At the end of 
each time slot, the exchange rates will then be calculated 
with all the requests generated in the same time slot. 

TABLE 1 SIMULTION PARAMETERS 

Name Value 

Number of Currencies 5 

Average Number of 
Request per Timeslot 

10 

Simulation Duration 

(Timeslots) 
100 

The experiment result is plotted in the market trend chart. 
We only illustrate the market trend of one currency pair 
(FBC – TWG), as shown in Figure. 6. Otherwise it will be 
messy if all plots are shown in one chart. TABLE 2 shows 
the statistic results of the experiment. (Currencies are 
arbitrarily denominated due to irrelevance to the experiment 
result.) 

The statistic result shows that VERA can provide more 
historical exchange rates by integrating USRA. This result 
can be found in all the exchanges in TABLE 2. In this 
experiment, the test case with USRA has 1.24 times the 
number of history data in the case without USRA. We also 
found that this multiple monotonically increases in the 
number of currencies, which is not shown here. Since the 
future exchange rate prediction heavily relies on history 
market trend, we conclude that unmatched supplies removal 
can positively influence the prediction accuracy. 

TABLE 2 SIMULTION RESULT 

Currency Pair 

No. of 

Exchange 

without 

USRA 

No. of Exchange 

with USRA 

WOG-QQB 50 51 

FBC-WOG 53 56 

FBC-LLD 49 58 

FBC-QQB 47 55 

WOG-LLD 51 56 

LLD-QQB 52 56 

WOG-TWG 52 53 

FBC-TWG 48 60 

LLD-TWG 44 57 

QQB-TWG 45 55 

Average 49.1 55.7 

Ave. no. of 

matched request 
7.65 9.45 

IX. CONCLUSION 

This paper identifies the solvability problem in virtual 
currency exchange rate calculation which may prevent us 
from acquiring effective exchange rates. To completely 
solve this problem, an algorithm is designed based on 
unmatched supply removal. We integrate this algorithm into 
the original exchange rate calculation process and 
implement it in our simulator for evaluation. 

Our work has the following contributions to the virtual 
currency exchange computation. First, the general condition 
of the solvability problem is identified with graph theory. 
Then, the problem is solved without changing the fairness 
property in exchange rate computation. With problem 
resolution, more exchange rates will be available in each 
transaction, enriching transaction histories. This has a 
positive influence on market trend analysis and future 
exchange rate prediction. 

 
Figure. 6 Currency FBC to Currency TWG Market Trend Comparison 
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