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Dynamic Models
Model updating of dynamical systems has been attracting much attention because it has a
very wide range of applications in aerospace, civil, and mechanical engineering, etc. Many
methods were developed and there has been substantial development in Bayesian methods
for this purpose in the recent decade. This article introduces some state-of-the-art work. It
consists of two main streams of model updating, namely model updating using response time
history and model updating using modal measurements. The former one utilizes directly
response time histories for the identification of uncertain parameters. In particular, the
Bayesian time-domain approach, Bayesian spectral density approach and Bayesian fast Fou-
rier transform approach will be introduced. The latter stream utilizes modal measurements of
a dynamical system. The method introduced here does not require a mode matching process
that is common in other existing methods. Afterwards, discussion will be given about the rela-
tionship among model complexity, data fitting capability and robustness. An application of a
22-story building will be presented. Its acceleration response time histories were recorded
during a severe typhoon and they are utilized to identify the fundamental frequency of the
building. Furthermore, three methods are used for analysis on this same set of measurements
and comparison will be made. [DOI: 10.1115/1.4004479]

1 Introduction

The problem of parametric identification for mathematical models
using input-output or output-only dynamic measurements has
received much attention over the years [1–12]. One important special
case is modal identification, in which the parameters for identification
are the small-amplitude modal frequencies, damping ratios, mode
shapes and modal participation factors of the lower modes of the dy-
namical system [13–15]. In particular, model updating of mechanical
or structural systems using ambient vibration survey is important. It
has attracted much interest because it offers a means of obtaining
dynamic data in an economical and efficient manner, without requir-
ing the setup of special dynamic experiments (e.g., actuators) which
are usually costly, time consuming, and often obtrusive [16–18]. In
ambient vibration survey, the naturally occurring vibration of the
structure is measured under wind, traffic, and micro-tremors, etc.
Then, a system identification technique is used to identify the small-
amplitude modal frequencies, damping ratios and mode shapes of the
lower modes of the structure [19]. The assumption usually made is
that the input excitation is a broad-band stochastic process adequately
modeled as stationary Gaussian white noise. A number of methods
have been developed to tackle this problem, e.g., the instrumental
variable method [20], the eigensystem realization algorithm [21], the
random decrement technique [22], the novelty measure technique
[23] and the natural excitation technique [24]. Several other methods
are based on fitting the correlation functions using least-squares type
of approach [25,26]. Different ARMA model based least-squares
methods have also been proposed, e.g., the two-stage least-squares
method [27–29]. Another important type of methods is the prediction
error methods [30–32] that minimize the optimally selected one-step-
ahead output prediction error. The possible usage of Kalman filter for
model identification was recognized in Ref. [33]. In Ref. [34], the
extended Kalman filter was investigated for the applications to esti-
mate the dynamic properties, such as modal frequencies, modal
damping coefficients and participation factors, of linear multidegree-
of-freedom systems. Since then, many methods were proposed as its
evolution for linear and nonlinear dynamical systems [35–44]. Other
nonlinear system identification methods based on advanced statistical
tools (such as wavelets, higher-order spectra, Lie series, and artificial
neural networks) have also been investigated for the case of known
input [45–50] and for the case of unknown input [51–54].

Results of modal/model identification are usually restricted to
the optimal values of the uncertain parameters. However, there is
additional information related to the uncertainty associated with
the parameter estimates and it is valuable for further processing.
For example, in the case where the identified modal parameters
are used to update the theoretical finite-element model of a struc-
ture, the updating procedure involves the minimization of a posi-
tive definite quadratic function of the differences between the
theoretical and the experimental modal parameters. The weighting
matrix in this goodness-of-fit function should reflect the uncer-
tainty in the values of the identified modal parameters so it can be
chosen as the inverse of the covariance matrix of these parame-
ters. In practice, this covariance matrix is usually estimated by
computing the statistics of the optimal estimates of the modal pa-
rameters from several sets of ambient data. However, this estima-
tion is unreliable unless the number of data sets is large. Recent
interest has been arisen to determine the uncertainty of the identi-
fied parameters of mechanical/structural systems using Bayesian
probabilistic approach [55–87]. The parametric uncertainty can be
quantified in the form of probability distribution in Bayesian infer-
ence [88,89]. The quantified uncertainty can be utilized for post-
processing, such as probabilistic control [90–92]. In this paper,
some state-of-the-art Bayesian methods are introduced. First, an
exact formulation with output-only data is presented and its com-
putational difficulty will be discussed. Then, the general model
updating problem will be formulated in Sec. 3. In parametric iden-
tification or model updating, a given model class with uncertain
parameters is prescribed and identification techniques are used to
identify these uncertain parameters. Two important problems in
structural dynamics are introduced in Secs. 4 and 5. In Sec. 4,
model updating using measured response of the underlying system
is considered. A method with input-output measurement will be
introduced. Its extension for explicit consideration of both input
and output noise is also presented. Then, in the second part of this
section, the Bayesian time-domain method, Bayesian spectral den-
sity method and Bayesian fast Fourier transform method will be
presented for output-only measurement. In Sec. 5, another impor-
tant type of model updating problem using identified eigenvalues
and eigenvectors of the system is introduced. The method pre-
sented here does not require model matching, which is necessary
in most existing methods but difficult in some practical situation.
After introducing parametric identification techniques, Sec. 6 dis-
cusses some of the key issues of model updating, including data
fitting capability, robustness and posterior uncertainty. Finally, an
example of structural health monitoring under severe typhoon is
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demonstrated in Sec. 7. The data will be analyzed by three meth-
ods and comparison will be given.

2 Exact Bayesian Formulation and Its Computational

Difficulties

Consider a single-degree-of-freedom (SDOF) system with
equation of motion:

€xþ 2fX _xþ X2x ¼ f ðtÞ (1)

where X and f are the natural frequency and damping ratio of the
oscillator, respectively. The input f is modeled as a zero-mean sta-
tionary Gaussian white noise with spectral intensity Sf 0. Assuming
stationarity of the response x, it is Gaussian with zero-mean and
autocorrelation function

RxðsÞ¼
pSf 0

2fX3
expð�fXjsjÞ cosðXdsÞþ

fffiffiffiffiffiffiffiffiffiffiffi
1�f2

p sinðXdjsjÞ
" #

(2)

where Xd ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
is the damped natural frequency of the os-

cillator [93,94]
Discrete data is sampled with time step Dt and use yn to denote

the measured response at time t ¼ nDt. Due to measurement noise
and modeling error, there is a difference between the measured
response yn and the model response xðnDtÞ, referred to hereafter
as prediction error. It is assumed that the prediction error can be
adequately represented by a discrete white noise process e with
zero mean and variance r2

e :

yn ¼ xðnDtÞ þ en; n ¼ 1; 2;…;N (3)

so this process e satisfies E enen0½ � ¼ r2
e dnn0 , where dnn0 denotes the

Kronecker delta. Furthermore, the stochastic response x and pre-
diction error e are assumed statistically independent.

Therefore, the set of measurement D includes the data points,
y1; y2;…; yN , and define a column vector: Y ¼ y1; y2;…; yN½ �T . It
follows that the likelihood function for a given set of data D is
given by

pðDjh;CÞ ¼ ð2pÞ�
N
2 CðhÞj j�

1
2exp � 1

2
YTCðhÞ�1

Y

� �
(4)

where C is the prescribed class of models governed by Eq. (1) with
the parameterization h ¼ ½X; f; Sf 0; re�T for the dynamical model
to be identified. The notation jAj is used to denote the determinant
of a matrix A. The likelihood function pðDjh;CÞ is an N-variate
Gaussian distribution of the measurement vector Y with zero mean
and covariance matrix CðhÞ with the (n,n0) element Cðn;n

0ÞðhÞ
� E½ynyn0 � is given by

Cðn;n
0ÞðhÞ ¼ Rx½ðn� n0ÞDtjh� þ r2

e dnn0 (5)

where Rx is the autocorrelation function of the system response
for a given model parameter vector h and it is given by Eq. (2).

However, for a large number of observed data points, repeated
evaluations of the likelihood function pðDjh;CÞ for different values
of h become computationally prohibitive. This is obvious from Eq.
(4) that it requires the computation of the solution X of the alge-
braic equation CðhÞX ¼ Y and the determinant of the N � N matrix
CðhÞ. This task is computationally very expensive for large number
of data points N. Repeated evaluations of the likelihood function
for thousands times in the optimization process is computationally
prohibitive even for a linear single-degree-of-freedom system.
Therefore, the exact Bayesian approach described above, based on
direct use of the measured data D, becomes practically infeasible.

3 Formulation of Model Updating Using Response

Measurement

Consider a linear dynamical system with Nd degrees of freedom
(DOFs) and its equation of motion is given by

M€xþ C _xþKx ¼ T0FðtÞ (6)

where M, C and K are the mass, damping and stiffness matrices,
respectively; T0 2 RNd�NF is a force distributing matrix; and the
input FðtÞ 2 RNF can be measured or unmeasured and that
depends on the application.

Discrete data of a system response quantity Q, e.g., accelera-
tion, is taken at No (� Nd) measured DOFs at times t ¼ nDt,
n ¼ 1; 2;…;N. Also, due to measurement noise and modeling
error, there is prediction error, i.e., a difference between the meas-
ured response yn 2 RNo and the model response at time t ¼ nDt
corresponding to the measured degrees of freedom. The latter is
given by QðnDtÞ. Therefore, the measured response yn at time nDt
can be expressed as follows:

yn ¼ QðnDtÞ þ en (7)

It is assumed that the prediction error can be adequately repre-
sented by a discrete zero-mean Gaussian white noise e with the
following No � No covariance matrix:

E ene
T
n0

� �
¼ Rednn0 (8)

where dnn0 is the Kronecker delta. Furthermore, the prediction error
e and the stochastic response Q are assumed statistically
independent.

Use h to denote the uncertain parameter vector that determines
the dynamical model within a prescribed class of models C. These
parameters include: (i) the structural parameters that determine
the model matrices M, C and K; (ii) the forcing parameters defin-
ing the stochastic model of the input if it is treated as a stochastic
process; (iii) the parameters defining the stochastic properties of
the measurement noise. Herein, the identification of the model pa-
rameter vector h given some measured data D is concerned. Using
the Bayes’ theorem, the posterior/updated probability density
function (PDF) of the model parameter vector h is given by

pðhjD;CÞ ¼ j1pðhjCÞpðDjh;CÞ (9)

where j1 is the normalizing constant such that integrating the
right hand side over the parameter space yields unity. The prior
PDF pðhjCÞ reflects the prior information of the parameters with-
out using the data. The likelihood function pðDjh;CÞ is the domi-
nant factor when the number of data points is large. It reflects the
contribution of the measured data D in establishing the updated
PDF of the parameters. The relative plausibility between two val-
ues of h does not depend on the normalizing constant j1. It
depends only on the relative values of the product of the prior
PDF pðhjCÞ and likelihood function pðDjh;CÞ. In order to search
for the most probable model parameter vector h, denoted by h�,
one minimizes the objective function: JðhÞ ¼ � ln pðhjCÞ½
pðDjh;CÞ�, which is the negative logarithm of the product of the
prior PDF and the likelihood function.

The reason for minimizing the objective function JðhÞ instead of
maximizing the posterior PDF directly is that the former has better
computational condition. It is found that the updated PDF of the pa-
rameter vector h can be well approximated by a Gaussian distribution
with mean h� and covariance matrixHðh�Þ�1

, whereHðh�Þ denotes
the Hessian of the objective function JðhÞ calculated at h ¼ h�.

4 Bayesian Model Updating Using Response

Measurements

4.1 Input-Output Data

4.1.1 Noise-Free Input Measurement. In this section, a
method is introduced to utilize input-output measurement for
identification purpose. The input measurement is considered noise
free so the uncertain parameter vector h includes the model pa-
rameters hm and the parameters that determine the elements of the
upper right triangular part of the prediction-error covariance ma-
trix Re (symmetry defines the lower triangular part of this matrix).
The dynamic data D consists of the measured time histories at N
discrete time steps of the excitation and system response. Assume
equal variances and stochastic independence for the prediction
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errors of different channels of measurements so the covariance
matrix for the prediction errors is Re ¼ r2

e INo
, where INo

is the
No � No identity matrix. Then, the updated PDF of the uncertain
parameters in h ¼ hT

m; r
2
e

� �T
given the data D and model class C

can be expressed as

pðhjD;CÞ ¼ j2pðhjCÞð2pÞ�
NNo

2 r�NNo
e exp �NNo

2r2
e

Jgðhm; D;CÞ
� �

(10)

where j2 is a normalizing constant and pðhjCÞ is the prior PDF of
the uncertain parameters in h, expressing the user’s judgment
about the relative plausibility of the values of the uncertain param-
eters before the data are used. The goodness-of-fit function is
given by [58,95,96]

Jgðhm; D;CÞ ¼ 1

NNo

XN

n¼1

yn �QðnDt; hm;CÞ
�� ��2

(11)

where QðnDt; hm;CÞ is the model response based on the assumed
class of models and the model parameter vector hm while yn is the
measured response at time nDt. Furthermore, jj.jj denotes the Eu-
clidean norm (2-norm) of a vector. The most probable model pa-
rameter vector h�m is obtained by maximizing the posterior PDF in
Eq. (10). For large N or with improper prior, this is equivalent to
minimizing the goodness-of-fit function Jgðhm; D;CÞ in Eq. (11)
over all possible values of hm:

h�m ¼ arg
hm

min Jgðhm; D;CÞ (12)

If Jgðhm; D;CÞ is known only implicitly, numerical optimization
is needed to search for the optimal model parameters and this can
be done by the function ‘fminsearch’ in MATLAB. The most proba-
ble value of the prediction-error variance in h� can be obtained
also by maximizing the posterior PDF and the solution is available
in closed form:

r2�
e ¼ min

hm

Jgðhm; D;CÞ ¼ min
hm

Jgðh�m; D;CÞ (13)

For dynamic testing, it is the number of observed degrees of free-
dom, No, and their distribution that are the essential factors for
identifiability. On the other hand, increasing the number data
points N does not increase the number of effective mathematical
constraints, and hence the identifiability.

For globally model-identifiable cases with large N [97,98], it
turns out that the posterior PDF pðhjD;CÞ is approximately Gaus-
sian. The mean is the optimal parameter vector h� and the covari-
ance matrix is equal to the inverse of the Hessian matrix of the
objective function JðhÞ ¼ � ln½pðDjh;CÞpðhjCÞ� at h�:

Hðl;l0Þðh�Þ ¼ � @2

@hl@hl0
ln½pðDjh;CÞpðhjCÞ�jh¼h� (14)

Since the uncertainty of the estimation can be quantified, the opti-
mal sensor locations can be obtained using the information en-
tropy [99] as a measure of the uncertainty of multivariate random
variables [100–104].

In practice, the prior distribution may be used as a regularizer
[105,106] to improve the well-posedness of the inverse problem:

pðhjCÞ ¼ ð2pÞ�
Nh
2

YNh

l¼1

rl

 !
exp � 1

2

XNh

l¼1

h2
l

r2
l

 !
(15)

It is a Gaussian PDF with zero mean so it decays as the radial dis-
tance to the origin increases in any direction. If there exist two or
more sets of parameters to give the same likelihood function values,
using this radially decaying prior distribution helps trimming down
the set of the optimal parameters to the one with the smallest 2-norm.

4.1.2 Consideration With Input Measurement Noise. In the
above method, it is assumed that there is no measurement error in
the input. Here, a method is introduced to consider explicitly the

measurement noise in both the input and output data. This feature
avoids the possible underestimation on the parametric uncertainty
in practice. Let N denote the total number of observed time steps.
Using the Bayes’ theorem, the updated PDF of the parameters h
given the measured input G1;G2;…;GN of the excitation F and
the measured response y1; y2;…; yN is given by

pðhjy1; y2;…; yN ;G1;G2;…;GN ;CÞ
¼ j3pðhjG1;G2;…;GN ;CÞ
� pðy1; y2;…; yN jG1;G2;…;GN ; h;CÞ (16)

where j3 is a normalizing constant. The probability distribution
pðhjG1;G2;…;GN ;CÞ represents the information from the meas-
ured input only. It can be approximated by the prior PDF
pðhjG1;G2;…;GN ;CÞ � pðhjCÞ since the measured input alone
does not have much saying on the model parameters (though it
contains some information of the prediction-error variance, e.g.,
the root-mean-square (rms) of the measurement noise should be
less than the rms of the measurement). The likelihood function
pðy1; y2;…; yN jG1;G2;…;GN ; h;CÞ reflects the contribution of
the measured data y1; y2;…; yN and G1;G2;…;GN in establishing
the updated PDF of the model parameters. Since pðy1; y2;…; yN
jG1;G2;…;GN ; h;CÞ is jointly Gaussian, direct calculation of this
PDF encounters similar computational problems as in the exact
formulation shown in Sec. 2. Therefore, an approximated likeli-
hood expansion is introduced [107]:

pðy1; y2;…; yN jG1;G2;…;GN ; h;CÞ
� pðy1; y2;…; yNp

jG1;G2;…;GN ; h;CÞ

�
YN

n¼Npþ1

pðynjyn�Npþ1;…; yn�1;G1;G2;…;GN ; h;CÞ (17)

The conditional PDFs are conditional on the last Np time steps
only. In order to obtain the reduced-order joint PDF and the condi-
tional PDFs, the differential equation of the state space model was
converted to a difference equation. By considering the input mea-
surement noise, the usually observed problem of underestimating
the parametric uncertainty can be resolved. The reduced-order
likelihood function pðy1; y2;…; yNp

jG1;G2;…;GN ; h;CÞ and the
conditional PDFs can be computed with the state space method
described in Ref. [107].

In Ref. [108], the Bayesian unified approach was introduced to
handle the more general case with incomplete input and incom-
plete output noisy measurements. The Bayesian unified method
opens a wide range of applications, including the special cases of
ambient vibration surveys, and measured input-output noisy data.
An application was presented for a building subjected to wind and
ground excitation simultaneously. The unmeasured wind pressure
was modeled as a stochastic process with uncertain parameters
but the ground excitation was observed with measurement noise.
The structural response was also observed at a limited number of
DOFs only. The unified method was applied successfully for
model updating and damage detection purpose.

4.2 Output-Only Methods

4.2.1 Bayesian Time-Domain Approach. Difficulty here is to
construct the likelihood pðDjh;CÞ because the random compo-
nents of the data points are correlated, which is in contrast to the
case with input-output data. By using the Bayes’ theorem, the
likelihood function can be expanded to a product of conditional
PDFs and a reduced-order joint PDF [109]:

pðDjh;CÞ ¼ pðy1;y2;…;yNp
jh;CÞ

YN
n¼Npþ1

pðynjy1;y2;…;yn�1;h;CÞ

(18)

This expansion is exact but it does not resolve the computational
difficulties encountered in the exact formulation. This is because
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the computation of each of the conditional PDFs pðynjy1;
y2;…; yn�1; h;CÞ for large n requires similar computational effort
as in the computation of the likelihood function pðDjh;CÞ in the
direct exact formulation and the right hand side of the expansion
involves many such conditional PDFs. In order to overcome this
computational obstacle, the following approximation for the like-
lihood function is introduced [110]:

pðDjh;CÞ � pðy1; y2;…; yNp
jh;CÞ

�
YN

n¼Npþ1

pðynjyn�Np
; yn�Npþ1;…; yn�1; h;CÞ (19)

In other words, the conditional PDFs depending on more than Np

previous data points are approximated by the conditional PDFs
depending on only the last Np data points. The sense of this
approximation is that data points belonging too far in the past do
not have significant information on the system response of the
present point. Of course, one expects this to be legitimate, if Np is
so large that the correlation functions have decayed to negligible
values. However, it is sufficient to use a value of Np to include the
data points within one fundamental period of the oscillator. In
other words, the value of Np is chosen to cover roughly one funda-
mental period of the system. In the case of multidegree-of-freedom
systems (i.e., multimode systems), such a selected value of Np cov-
ers more than one period of the higher modes so the approximation
is even more accurate for the higher modes. Although the funda-
mental frequency X is an unknown parameter, it can be roughly
estimated from the first peak of the response spectrum to obtain
the value of Np prior to the identification. The identification result
is not sensitive to the selected value of Np if it is sufficiently large.

Use Yn;n0 to denote the vector comprised of the response measure-
ments from time nDt to n0Dt (n � n0) in a time-descending order:

Yn;n0 ¼ yT
n0 ; y

T
n0�1;…; yT

n

� �T
; n � n0 (20)

Then, the joint PDF pðy1; y2;…; yNp
jh;CÞ follows an NoNp -vari-

ate Gaussian distribution with zero mean and covariance matrix
RY1;Np

:

RY1;Np
¼ E½Y1;Np

YT
1;Np
� ¼

CNp;Np
sym

..

. . .
.

C1;Np
	 	 	 C1;1

2
64

3
75 (21)

where the submatrix Cn;n0 has dimension No � No and it is given by

Cn;n0 ¼ E ynyT
n0

� �
¼ RQðnDt; n0DtÞ þ Rednn0 (22)

where dnn0 is the Kronecker Delta; RQ denotes the autocorrelation
matrix function of the model response Q; and Re is the noise co-
variance matrix defined in Eq. (8). Since the random vectors
y1; y2;…; yNp

are jointly Gaussian with zero mean, the reduced-
order likelihood function pðy1; y2;…; yNp

jh;CÞ is given by

pðy1; y2;…; yNp
jh;CÞ ¼ ð2pÞ�

NoNp
2 jRY1;Np

j�
1
2

� exp � 1

2
YT

1;Np
R�1

Y1;Np
Y1;Np

� 	
(23)

To compute this likelihood function, it involves only the solution
of the linear algebraic equation RY1;Np

X ¼ Y1;Np
and the determi-

nant of the matrix RY1;Np
which is NoNp � NoNp only.

Then, the general expression is given for the conditional proba-
bility densities involving Np previous points pðynjyn�Np

; yn�Npþ1;
…; yn�1; h;CÞ in Eq. (19), with n > Np 
 1. First, the random
vector Yn�Np ;n has zero mean and covariance matrix RYn�Np ;n

:

RYn�Np ;n
¼ E Yn�Np;nYT

n�Np;n

h i
¼

Cn;n sym

..

. . .
.

Cn�Np;n 	 	 	 Cn�Np;n�Np

2
64

3
75
(24)

where the submatrix Cn;n0 is given by Eq. (22). Then, this matrix
is partitioned as follows:

RYn�Np ;n
¼

R11;n R12;n

RT
12;n R22;n

" #
(25)

where the matrices R11;n, R12;n and R22;n have dimensions
No � No, No � NoNp and NoNp � NoNp, respectively. R11;n and
R22;n are the unconditional covariance matrix of the prediction tar-
get variables and the conditioning variables; and the matrix R12;n

quantifies their correlation.
Since the measured response has zero mean, the optimal esti-

mator ŷn of yn conditional on Yn�Np ;n�1 is given by [111]:

ŷn � Ebynjyn�Np
; yn�Npþ1;…; yn�1; h;Cc ¼ R12;nR

�1
22;nYn�Np ;n�1

(26)

and the covariance matrix Re;n of the prediction error en ¼ yn �ŷn
is given by

Re;n � EbeneT
n jyn�Np

; yn�Npþ1;…; yn�1; h;Cc
¼ R11;n � R12;nR

�1
22;nR

T
12;n (27)

Therefore, the conditional probability density pðynjyn�Np
;

yn�Npþ1;…; yn�1; h;CÞ follows an No-variate Gaussian distribu-
tion with mean ŷn and covariance matrix Re;n:

pðynjyn�Np
; yn�Npþ1;…; yn�1; h;CÞ

¼ ð2pÞ�
No
2 jRe;nj�

1
2 exp � 1

2
yn � ŷn


 �T
R�1

e;n yn � ŷn


 �� �
(28)

The most probable parameter vector h� is obtained by minimizing
the objective function which is the negative logarithm of the pos-
terior PDF (without including the terms that do not depend on h):

JðhÞ ¼ � ln pðhjCÞ þ 1

2
ln jRY1;Np

j þ 1

2
YT

1;Np
R�1

Y1;Np
Y1;Np

þ 1

2

XN

n¼Npþ1

ln jRe;nj þ yn � ŷn


 �T
R�1

e;n yn � ŷn


 �h i
(29)

In the special case of stationary response, the matrices Re;n ¼ Re

and R12;nR
�1
22;n ¼ R12R

�1
22 required in the computation of the opti-

mal estimator ŷn do not depend on the time step n. Therefore, the
objective function in Eq. (29) can be simplified as follows:

JðhÞ ¼ � ln pðhjCÞ þ 1

2
ln jRY1;Np

j þ 1

2
YT

1;Np
R�1

Y1;Np
Y1;Np

þ N � Np

2
ln jRej þ

1

2

XN

n¼Npþ1

yn � ŷn


 �T
R�1

e yn � ŷn


 �
(30)

In this case, it requires only the computation of the inverse and de-
terminant of the matrices RY1;Np

(¼R22;n) and Re, which are
NoNp � NoNp, and No � No, respectively. These sizes are much
smaller than the NNo � NNo matrix RY1;N

appeared in the direct
formulation.

4.2.2 Bayesian Spectral Density Approach. The Bayesian
spectral density approach is a frequency-domain approach. First,
consider a discrete stochastic vector process y and a finite number
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of discrete data points D¼fyn, n¼1,2,…,Ng. Based on D a dis-
crete estimator of the spectral density matrix of the stochastic pro-
cess y is introduced:

Sy;NðxkÞ ¼ YðxkÞYðxkÞH (31)

where H denotes the adjoint or conjugate transpose of a complex
vector/matrix. The vector YðxkÞ 2 CNo denotes the scaled discrete
Fourier transform of the vector process y at frequency xk:

YðxkÞ ¼
ffiffiffiffiffiffiffiffiffi
Dt

2pN

r XN�1

n¼0

yn exp �inxkDtð Þ (32)

where xk ¼ kDx, k ¼ 0; 1;…;Nnqy with Nnqy ¼ INTðN=2Þ,
Dx ¼ 2p=T, and T ¼ NDt.

Taking expectation of Eq. (31) yields

E½Sy;NðxkÞjh;C� ¼ E½SQ;NðxkÞjh;C� þ E½Se;NðxkÞjh;C� (33)

The matrices SQ;NðxkÞ and Se;NðxkÞ are defined in similar manner
to Eq. (31) and Eq. (32) for the vector processes Q and e, respec-
tively. One can show that the first term on the right hand side has
the following form [112]:

E½Sðl;l
0Þ

Q;N ðxkÞjh;C� ¼
Dt

2pN

�
NR
ðl;l0Þ
Q ð0Þ þ

XN�1

n¼1

ðN � nÞ

� R
ðl;l0Þ
Q ðnDtÞeinxkDt þ R

ðl0;lÞ
Q ðnDtÞe�inxkDt

h i�
(34)

where RQ is the correlation matrix function of the quantity Q.
This estimator E½Sðl;l

0Þ
Q;N ðxkÞjh;C� can be computed efficiently using

the function ‘fft’ in Ref. [113]. For the measurement noise, since
its correlation function is nonzero only with zero time lag, the
term E½Se;NðxkÞjh;C� can be readily obtained in terms of the co-
variance matrix Re:

E½Se;NðxkÞjh;C� ¼
Dt

2p
Re � Se0 (35)

Assume that Ns sets of independent and identically distributed
time histories are available: Dð1Þ;Dð2Þ;…;DðNsÞ. As T !1 and
Dt! 0þ, the corresponding discrete Fourier transforms Y ðsÞðxkÞ,
s ¼ 1; 2;…;Ns, are independent and follow an identical complex
No-variate normal distribution with zero mean. Then, the averaged
spectral density matrix estimator:

Sav
y;NðxkÞ ¼

1

Ns

XNs

s¼1

S
ðsÞ
y;NðxkÞ (36)

follows the central complex Wishart distribution of dimension No

with Ns degrees of freedom [114]. Its PDF is given by

p Sav
y;NðxkÞjh;C

� 

¼

p�
NoðNo�1Þ

2 N
NoðNs�NoÞ
s Sav

y;NðxkÞ
��� ���Ns�No

QNo

s¼1

ðNs � sÞ!
� 	

E Sy;NðxkÞjh;C
� ��� ��Ns

� exp �Nstr E Sy;NðxkÞjh;C
� ��1

Sav
y;NðxkÞ

n o� 

(37)

where jAj and trfAg denote the determinant and trace of the ma-
trix A, respectively. Note that this PDF exists if and only if
Ns 
 No. Furthermore, it can be shown that when T !1 and
Dt! 0þ, the random matrices Sav

y;NðxkÞ and Sav
y;Nðxk0 Þ are inde-

pendently complex Wishart distributed for k 6¼ k0 [115].
Although the Wishart distribution and independence properties

are exact only as Dt! 0þ, it can be verified by simulation that
they are good approximations in a particular frequency range. It

was verified using simulation that such approximations are indeed
accurate if an appropriately chosen bandwidth is considered. The
reasons for the violation of these approximations are aliasing and
leakage. Therefore, the range of frequency for accurate approxima-
tions is the region with large spectral values since the aliasing and
leakage effects have relatively minor contribution in such fre-
quency range. As a result, in the case of displacement measure-
ment such range of frequencies corresponds to the lower frequency
range. This range increases for higher levels of prediction error.

Based on the above discussion regarding the statistical proper-
ties of the averaged spectral estimator, the Bayesian spectral den-
sity approach for updating the uncertain parameter vector h is
given as follows. With Ns (
 No) independent sets of observed
data D(s), s ¼ 1; 2;…;Ns, the corresponding observed spectral
density matrix estimators S

ðsÞ
y;NðxkÞ, s ¼ 1; 2;…;Ns, k 2 K, can be

obtained using Eq. (31) and Eq. (32). Then, the averaged spectral
density matrix estimators Sav

y;NðxkÞ is readily obtained by Eq. (36)
to form the averaged spectral set: Sav

K � fSav
y;NðkDxÞjk 2 Kg.

Here, the frequency index set K represents a range over the Wish-
art distribution and independence approximations are satisfactory.
Using the Bayes’ theorem in a similar fashion as Eq. (9), the
updated PDF of the model parameter vector h given the averaged
spectral set Sav

K is given by

pðhjSav
K ;CÞ ¼ j4pðhjCÞpðSav

K jh;CÞ (38)

where j4 is a normalizing constant. The likelihood function
pðSav

K jh;CÞ expresses the contribution of the measured data. Based
on the Wishart distribution and independence approximation, it
can be calculated as follows:

p Sav
K jh;C


 �
¼ j5

Y
k2K

1

jE½Sy;NðxkÞjh;C�jNs

� expð�NstrfE½Sy;NðxkÞ��1
Sav

y;NðxkÞgÞ (39)

where

j5¼p�
No ðNo�1ÞNx

2

YNo

s¼1

ðNs� sÞ!
 !�Nx

NNoðNs�NoÞNx
s

Y
k2K

Sav
y;NðxkÞ

��� ���Ns�No

is a constant that does not depend on the uncertain parameters; Nx
is the number of frequency points to be considered and it is equal
to the number of the distinct elements in the set K. For a given set
of data, the constant j5 does not depend on the model parameters
so it does not affect the optimal parameters and their associate
uncertainties. Finally, the most probable parameter vector h� is
obtained by minimizing the objective function:

JðhÞ ¼ � ln pðh j CÞ þ Ns

X
k2K

ðln jE½Sy;NðxkÞjh;C�j

þ trfE½Sy;NðxkÞ��1
Sav

y;NðxkÞgÞ (40)

In the case if a noninformative prior is used, the first term can be
simply neglected. Furthermore, the updated PDF of the parameter
vector h can be well approximated by a Gaussian distribution with
mean h� and covariance matrix Hðh�Þ�1

, where Hðh�Þ denotes
the Hessian matrix of the objective function J calculated at
h ¼ h�:

Hðl:l0Þðh�Þ ¼ Ns

X
k2K

�
@2

@hl@hl0
ðln E½Sy;NðxkÞjh;C�
�� ��

þ trfE½Sy;NðxkÞjh;C��1
Sav

y;NðxkÞgÞ
�

h¼h�

� @
2 ln pðhjCÞ
@hl@hl0

����
h¼h�

(41)

The two approximations used in the Bayesian spectral density
approach are accurate in a particular frequency range. It is
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recommended to select the frequency index set to include only the
range around the peaks in the spectrum even though the Chi-
square/Wishart distribution and independence approximations are
accurate over a wider range. This selection enhances the computa-
tional efficiency without sacrificing substantially the information
for the frequency structure of the dynamical system (though it
induces loss of information for the prediction-error variance).
Another advantage is that the results by this choice will rely less
on the whiteness assumption since it requires a flat spectral den-
sity function for each mode only around the corresponding peak
instead of over the whole frequency range. Moreover, the aliasing
and leakage effects generally have less influence on this range
since their spectral values are large.

Another important advantage of this cutoff frequency range is
as follows. In most existing probabilistic methods, the uncertainty
of the model parameters will tend to zero if the sampling time
interval tends to zero with a fixed observed duration (even if it is
very short) as long as it is globally identifiable. This is the conse-
quence of the discrete white noise assumption. Note that this phe-
nomenon occurs even for filtered white noise, such as moving
average or autoregressive output of white noise. However, for the
Bayesian spectral density method with this proposed cutoff fre-
quency range, the sampling time interval does not affect the fre-
quency index set so the same number of frequencies is considered
regardless of the sampling time interval (if it is sufficiently small).
Therefore, the uncertainty of the model parameters estimated by
the Bayesian spectral density method will stabilize as the sam-
pling time step tends to zero. This feature of the methodology is
appealing for practical purposes. Note that this method can be
extended for nonlinear systems [116].

4.2.3 Bayesian Fast Fourier Transform Approach. The
Bayesian fast Fourier transform approach uses the statistical prop-
erties of discrete Fourier transforms, instead of the spectral den-
sity estimators, to construct the likelihood function and the
updated PDF of the model parameters [117]:

p YKjh;Cð Þ ¼ k6

Y
k2K

1

ð2pÞNo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCZðxkÞj

p
� exp

�
� 1

2
ZðxkÞTCZðxkÞ�1

ZðxkÞ
	

(42)

where YK denotes the set of discrete Fourier transform of the measure-
ment defined in Eq. (32) in the frequency range described by the fre-
quency index set K; the vector ZðxkÞ ¼ ½Re½YðxkÞ�T ; Im½YðxkÞ�T �T
is real and it includes the real and imaginary parts of the discrete Fou-
rier transform; and the matrix CZðxkÞ is the covariance matrix of the
vector ZðxkÞ and its expression is given by Ref. [117].

This method does not rely on the approximation of the Wishart
distributed spectrum and the individual Gaussian likelihood func-
tion given in Eq. (42) is exact. The only approximation was made
on the independency of the discrete Fourier transforms at different
frequencies. Therefore, the Bayesian fast Fourier transform
approach is more accurate than the spectral density approach in
the sense that one of the two approximations in the latter is
released. However, since the fast Fourier transform approach con-
siders the real and imaginary parts of the discrete Fourier trans-
form, the corresponding covariance matrices are 2No � 2No,
instead of No � No in the spectral density approach. Therefore, the
spectral density approach is computationally more efficient than
the fast Fourier transform approach.

4.2.4 Unknown Input Without Assuming its Stochastic
Model. In the literature and the aforementioned identification
methods, the input is either measured or modeled as a prescribed
parametric stochastic model (even though the parameters may be
unknown). This seems to be a necessary condition for model iden-
tification purpose. For example, consider a linear single-degree-of-
freedom system. In frequency domain, the response X is equal to
the input F, magnified by the transfer function of the oscillator H:

XðxÞ ¼ HðxÞFðxÞ (43)

Therefore, if the time-frequency model of the input is completely
unknown, the output measurement does not have any saying on
the transfer function of the oscillator since there exists a set of
input to match with the measured output:

FðxÞ ¼ XðxÞ=HðxÞ (44)

In other words, identification of the model parameters is impossi-
ble in this case since all model parameters (as long as the associ-
ated transfer function is nonzero) give the same likelihood
(perfect match) to the measurement.

However, if two or more DOFs are measured in a multistory
building subjected to ground motion, the ratio between the
responses of different DOFs will be constrained by the prescribed
class of structural models, such as shear building models. In Ref.
[118], a frequency-domain method for unknown input was pro-
posed and it does not assume any time-frequency model for the
input. The method takes the advantage that when the number of
the measured channels is larger than the number of independent
external excitations, there are mathematical constraints among the
responses of different degrees of freedom. For example, when the
building is subjected to earthquake ground motion, the number of
independent input is one. If the responses of two or more degrees
of freedom are measured for this building, there is information to
infer the structural properties even though no assumption is made
on the time-frequency content of the excitation. Specifically, the
data is partitioned into two parts:

DA ¼ yA
0 ; y

A
1 ;…; yA

N�1

� �
; DB ¼ yB

0 ; y
B
1 ;…; yB

N�1

� �
(45)

where yA
n and yB

n , n ¼ 0; 1;…;N � 1, are the measurements corre-
sponding to the first NF and last No � NF DOFs, respectively. The
number NF denotes the dimension of the input F. Then, the likeli-
hood function can be expanded by the Bayes’ theorem:

pðDjh;CÞ ¼ pðDA;DBjh;CÞ ¼ pðDBjh;DA;CÞpðDAjh;CÞ (46)

It turns out that the likelihood function pðDAjh;CÞ does not
depend on h for this partitioning arrangement and the conditional
likelihood function pðDBjh;DA;CÞ can be constructed in the fre-
quency domain. The idea is that since the number of the independ-
ent excitation components is smaller than the number of observed
degrees of freedom, one can develop easily the linear relationship
between the Fourier transform of QA (measured quantity corre-
sponding to yA) and QB (measured quantity corresponding to yB):

QBðxÞ ¼ HBAðxÞQAðxÞ (47)

where QAðxÞ and QBðxÞ are the discrete Fourier transform of the
measured quantify QA and QB; HBAðxÞ is the transfer function
from QA to QB and it can be obtained easily using the excitation-
response transfer function. For details, please refer to Ref. [118].
By using the relationship in Eq. (47), the likelihood function can
be obtained by treating the measurement in DA as the input:

p DAjh;DB;C

 �

¼ j7

Y
k2K

1

ð2pÞðN0�NFÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCðxkÞj

p
� exp

 
� 1

2

Re½YBðxkÞ� � lR

Im½YBðxkÞ� � lI

" #T

� CðxkÞ�1 Re½YBðxkÞ� � lR

Im½YBðxkÞ� � lI

" #!
(48)

where lR and lI are the means and CðxkÞ is the covariance matrix
and their expressions are given in Ref. [118]. However, caution
must be made on the ill-posedness of the inverse problem since
this relaxation of the assumption on the input stochastic model
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breaks the bonding between different frequencies and induces a
higher degree of ill conditioning of the problem. Therefore, the
Bayesian framework is important to indicate if it is globally iden-
tifiable to avoid misleading results.

If the mathematical model for the concerned system has too
many uncertain parameters, the measurement will not provide suf-
ficient mathematical constraints/equations to uniquely identify the
uncertain parameters. However, experienced engineers can iden-
tify the critical substructures for monitoring. Then, a free body
diagram can be drawn to focus on these critical substructures
only. Note that the internal forces on the boundary of the substruc-
tures are unknown and difficult to measure, so they are treated as
uncertain input to the substructure [57,119]. Furthermore, these
internal forces share the dominant frequencies of the structure so
they cannot be modeled arbitrarily as white noise or other pre-
scribed colored noise. However, with the same idea as in
[118,120,121], these interface forces can be treated as unknown
inputs without assuming their time-frequency content [122]. This
enables a large number of possible applications in structural
health monitoring and also enhances the computational efficiency
since one does not need to consider the whole system.

5 Bayesian Model Updating Using Modal

Measurements

This section introduces another type of Bayesian model updat-
ing techniques using modal measurements, i.e., modal frequencies
and mode shapes. For structural/mechanical dynamics problems,
the eigenvalues are the squared modal frequencies: kðmÞ ¼ XðmÞ2,
m ¼ 1; 2;…;Nd , and the eigenvectors, /ð1Þ;/ð2Þ;…;/ðNdÞ, are the
mode shapes.

There are nonmodel based methods [123–129] and model based
methods [130–134]. The method introduced here falls into the
second category and most existing global structural health moni-
toring methods use dynamical model updating to determine local
loss of stiffness by minimizing a measure of the difference
between the modal frequencies and mode shapes measured in
dynamic tests and those calculated from a finite-element model of
the structure. The measured modal parameters are those estimated
from dynamic test data using some modal identification proce-
dure. A generic form of the goodness-of-fit function to be mini-
mized is

JgðhÞ ¼
XNm

m¼1

wm½kðmÞðhÞ � k̂ðmÞ�2 þ
XNm

m¼1

w0m /ðmÞðhÞ � /̂ðmÞ
��� ���2

(49)

where k̂ðmÞ and /̂ðmÞ are the measured eigenvalue and eigenvector
of the mth mode; kðmÞðhÞ and /ðmÞðhÞ are the eigenvalue and
eigenvector of the mth mode from the dynamical model with pa-
rameter vector h that determines the stiffness and mass matrix;
and wm and w0m, m ¼ 1; 2;…;Nm, are chosen weightings that
depend on the specific method. One major difficulty is that mode
matching is required, i.e., it is necessary to determine which
model mode matches which measured mode. If only measure-
ments of partial mode shapes are available, this will not be a triv-
ial task. Another major difficulty is that the Nm observed modes in
dynamic tests might not necessarily be the Nm lowest-frequency
modes in practice. In other words, some lower modes might not
be detected. For example, some torsional modes are not excited.
Furthermore, in the case where there is damage in the structure,
the order of the modes might switch because the local loss of stiff-
ness from damage may affect some modal frequencies more than
others, making the mode matching even more challenging [135].

Recently, methods have been proposed for solving this model
updating problem which avoid mode matching [136,137]. This is
accomplished by employing the concept of system mode shapes
that are used to represent the actual mode shapes of the structural
system at all degrees of freedom corresponding to those of the dy-
namical model, but they are distinct from the mode shapes of the

dynamical model, as will be seen more clearly later. Bayesian
probabilistic methods are then used to update the dynamical
model parameters and the system mode shapes based on the avail-
able modal data. Furthermore, Rayleigh quotient frequencies,
which are based on the dynamical model and the system mode
shapes, are employed instead of the modal frequencies of the dy-
namical model, so the eigenvalue problem needs never be solved.

As shown in previous research [136–138], the realistic assump-
tion is made that only the modal frequencies and partial mode
shapes of some modes are measured; system mode shapes are also
introduced, which avoids mode matching between the measured
modes and those of the dynamical model. The novel feature in
this work is that system frequencies are also introduced as param-
eters to be identified in order to represent actual modal frequen-
cies of the dynamical system (assuming that the dynamical
behavior is well approximated by linear dynamics; otherwise they
should be interpreted in the equivalent linear sense). The eigen
equations of the dynamical model are used only in the prior proba-
bility distribution to provide soft constraints. Furthermore, to cal-
culate the most probable values of the model parameters based on
the modal data, an efficient iterative procedure is used that
involves a series of coupled linear optimization problems, rather
than directly solving the challenging nonlinear optimization prob-
lem by some general algorithms that may give convergence diffi-
culties in the high-dimensional parameter space.

A class of dynamical models C is considered. It has a known
mass matrix M 2 RNd�Nd (which is assumed to be established with
sufficient accuracy from the engineering drawings of the struc-
ture) and the stiffness matrix K 2 RNd�Nd is parameterized by
h ¼ ½h1; h2;…; hNh

�T 2 RNh as follows:

KðhÞ ¼ K0 þ
XNh

l¼1

hlKl (50)

where the subsystem stiffness matrices Kl, l ¼ 0; 1;…;Nh, are
specified; e.g., by a finite-element model of the structure. The
scaling parameters in h allow the nominal model matrix given by
h ¼ hg in Eq. (50) to be updated based on dynamic test data from
the system.

Assume that Nm (� Nd) modes of the system are measured (not
necessarily the first Nm lowest frequency modes), which have
eigenvalues kðmÞ, m ¼ 1; 2;…;Nm, and real eigenvector compo-
nents /ðmÞ 2 RNd , m ¼ 1; 2;…;Nm. It is assumed that these modal
parameters do not necessarily satisfy exactly the eigen equation
with any given dynamical model ðM;KðhÞÞ because there are
always modeling approximations and errors. The quantities kðmÞ

and /ðmÞ are referred to as the system eigenvalue and eigenvector
of the mth mode to distinguish them from the corresponding
modal parameters given by any dynamical model specified by h.
Given a parameter vector h, the model can be defined in model
class C. The prior probability density function for k ¼ ½kð1Þ;
kð2Þ;…; kðNmÞ�T and U ¼ ½/ð1ÞT ;/ð2ÞT ;…;/ðNmÞT �T is chosen as

pðk;Ujh;CÞ ¼ j8 exp � 1

2
Jg k;U; hð Þ

� �
(51)

where j7 is a normalizing constant and the goodness-of-fit func-
tion is given by

Jg k;/;hð Þ¼

ðKðhÞ�kð1ÞMÞ/ð1Þ

ðKðhÞ�kð2ÞMÞ/ð2Þ

..

.

ðKðhÞ�kðNmÞMÞ/ðNmÞ

2
666664

3
777775

T

R�1
eq

ðKðhÞ�kð1ÞMÞ/ð1Þ

ðKðhÞ�kð2ÞMÞ/ð2Þ

..

.

ðKðhÞ�kðNmÞMÞ/ðNmÞ

2
666664

3
777775

(52)

The uncertainty in the equation errors for each mode are modeled
as independent and identically distributed, so Req ¼ r2

eqINdNm
; r2

eq
is a prescribed equation-error variance. The usage of this variance
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parameter allows for explicit treatment of modeling error as the
parametric models for the stiffness matrix, and hence, the eigen
equation, is never exact in practice. If this error level can be esti-
mated, the mathematical constraint given by the eigen equation
will become a soft constraint instead of a rigid constraint. In other
words, errors of the eigen equation in the level corresponding to
req is allowed. The value of r2

eq may be chosen to be very small
so that the eigen equations are nearly satisfied. This means that
the system modal frequencies and mode shapes will correspond
closely to modal parameters of the identified dynamical model.
For modal data from a real structure, this would be a reasonable
strategy to start with. If the measured modal parameters did not
agree well with those corresponding to the identified (most proba-
ble) dynamical model, implying considerable modeling errors,
then r2

eq could be increased. This procedure allows explicit control
of the inherent trade-off between how well the measured modal
parameters are matched and how well the eigen equations of the
identified dynamical model are satisfied. This additional modeling
flexibility is an appealing feature of this method.

The prior PDF pðk;Ujh;CÞ implies that, given a class of dy-
namical models and before using the dynamic test data, the most
probable values of k and U are those that minimize the Euclidean
norm (2-norm) of the error in the eigen equation for the dynamical
model. This implies that the prior most probable values of k and
U are the squared modal frequencies and mode shapes of a dy-
namical model, but these values are never explicitly required.
This prior PDF will have multiple peaks because there is no
implied ordering of the modes here.

The prior PDF for all the unknown parameters is given by

pðk;U; hjCÞ ¼ pðk;Ujh;CÞpðhjCÞ (53)

where the prior PDF pðhjCÞ can be taken as a Gaussian distribu-
tion with mean hg representing the nominal values of the model
parameters and with covariance matrix Rh. For example, the prior
covariance matrix Rh can be taken as diagonal with large varian-
ces, giving virtually a noninformative prior.

To construct the likelihood function, the measurement error e is
introduced:

k̂

Ŵ

" #
¼

k

LoU

� �
þ e (54)

and a Gaussian probability model is chosen for e 2 RNmðNoþ1Þ with
zero mean and covariance matrix Re, which can be obtained by
Bayesian modal identification methods (such as the ones intro-
duced in the previous sections); Ŵ ¼ ½ûð1ÞT ; ûð2ÞT ;…; ûðNmÞT �T
and k̂ ¼ ½k̂ð1Þ; k̂ð2Þ;…; k̂ðNmÞ�T , where ûðmÞ 2 RNo gives the
observed components of the system eigenvector of the mth mode
and k̂ðmÞ gives the corresponding observed system eigenvalue
from dynamic test data. Finally, Lo is an NmNo � NdNm observa-
tion matrix of 1’s or 0’s that picks the components of U corre-
sponding to the No measured degrees of freedom. The likelihood
function is therefore

pðk̂; Ŵjk;U; h;CÞ ¼ pðk̂; Ŵjk;UÞ (55)

is a Gaussian distribution with mean ½kT ; LoUð ÞT �T and covariance
matrix Re.

The posterior PDF for the unknown parameters is given by the
Bayes’ theorem:

pðk;U; hjk̂; Ŵ;CÞ ¼ j9pðk̂; Ŵjk;U; h;CÞpðk;Ujh;CÞpðhjCÞ
¼ j9pðk̂; Ŵjk;UÞpðk;Ujh;CÞpðhjCÞ (56)

The most probable values of the unknown parameters can be
found by maximizing this PDF. To proceed, the objective function
is defined as Ref. [139]:

Jðk;U; hÞ ¼ 1

2
h� hgð ÞTR�1

h h� hgð Þ

þ 1

2r2
eq

XNm

m¼1

kðKðhÞ � kðmÞMÞ/ðmÞk2

þ 1

2

k̂� k

Ŵ� LoU

" #T

R�1
e

k̂� k

Ŵ� LoU

" # (57)

which is the negative logarithm of the posterior PDF without
including the constant that does not depend on the uncertain pa-
rameters. Here, jj.jj denotes the Euclidean norm. Then, the func-
tion Jðk;U; hÞ is minimized instead of maximizing the posterior
PDF. This objective function is not quadratic for the uncertain pa-
rameters. However, this function is quadratic for any of the uncer-
tain parameter vector of k, U or h if the other two are fixed.
Therefore, the original nonlinear optimization problems can be
done iteratively through a sequence of linear optimization
problems.

The mode shapes are usually measured/identified with incom-
plete components, i.e., with missing DOFs but the modal frequen-
cies are measured with relatively high accuracy. Therefore, the
sequence of optimization starts from computing the missing com-
ponents of the mode shapes. First set the updated model parame-
ters at their nominal values (h� ¼ hg) and the eigenvalues at their
measured values (k� ¼ k̂). Then, perform a sequence of iterations
comprised of the following linear optimization problems:

U� ¼ arg min
U

Jðk�;U; h�Þ; k� ¼ arg min
k

Jðk;U�; h�Þ;

h� ¼ arg min
h

Jðk�;U�; hÞ

until the prescribed convergence criteria is satisfied and these
three optimization problems is explained in more detail in the
following.

By minimizing the objective function Jðk;U; hÞ in Eq. (57)
with respect to U, the optimal vector U� can be obtained:

U� ¼ r�2
eq

ðkð1Þ�M�K�Þ2 0

. .
.

0 ðkðNmÞ�M�K�Þ2

2
664

3
775þ LT

o R�1
e


 �
22

Lo

2
664

3
775
�1

�LT
o R�1

e


 �
21

k̂� k�
� 


þ R�1
e


 �
22

Ŵ
h i

(58)

where R�1
e


 �
21

and R�1
e


 �
22

are the NmNo � Nm left bottom and
NmNo � NmNo right bottom sub-matrices of R�1

e ; and the updated
stiffness matrix K� ¼ Kðh�Þ.

By minimizing the objective function Jðk;U; hÞ in Eq.
(57) with respect to k, the updated parameter vector k� is
given by
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k� ¼ r�2
eq

/ð1Þ�TM2/ð1Þ� 0

. .
.

0 /ðNmÞ�TM2/ðNmÞ�

2
664

3
775þ R�1

e


 �
11

2
664

3
775
�1

� r�2
eq

/ð1Þ�TMK�/ð1Þ�

/ð2Þ�TMK�/ð2Þ�

..

.

/ðNmÞ�TMK�/ðNmÞ�

2
666664

3
777775þ R�1

e


 �
11

k̂þ R�1
e


 �
12

Ŵ� Lo/
�

� 

0
BBBBB@

1
CCCCCA

(59)

where R�1
e


 �
11

and R�1
e


 �
12

are the Nm � Nm left top and
Nm � NmNo right top sub-matrices of R�1

e .
By minimizing Eq. (57) with respect to h, the updated model

parameter vector h� is given by

h� ¼ r�2
eq GT

h Gh þ R�1
h

� 
�1

� r�2
eq GT

h

ðkð1Þ�M�K0Þ/ð1Þ�

..

.

ðkðNmÞ�M�K0Þ/ðNmÞ�

2
664

3
775þ R�1

h hg

0
BB@

1
CCA (60)

where the matrix Gh is given by

Gh ¼

K1/
ð1Þ� K2/

ð1Þ� 	 	 	 KNh/
ð1Þ�

K1/
ð2Þ� K2/

ð2Þ� 	 	 	 KNh/
ð2Þ�

..

. ..
. . .

. ..
.

K1/
ðNmÞ� K2/

ðNmÞ� 	 	 	 KNh/
ðNmÞ�

2
6664

3
7775

NdNm�Nh

(61)

The iterative procedure consists of the following steps:

(1) Take the initial values of the model parameters as the nomi-
nal values: h� ¼ hg, and the eigenvalues as the measured
values: k� ¼ k̂. Then, K� ¼ Kðh�Þ.

(2) Update the estimates of the system eigenvectors /ðmÞ�,
m ¼ 1; 2;…;Nm, using Eq. (58).

(3) Update the estimates of the system eigenvalues (squared
modal frequencies) kðmÞ�, m ¼ 1; 2;…;Nm, using Eq. (59).

(4) Update the estimates of the model parameters h� by using
Eq. (60)

(5) Iterate Steps 2, 3 and 4 until the model parameters in h� sat-
isfy some convergence criterion, thereby giving the most
probable values of the model parameters based on the
modal data.

The posterior PDF in Eq. (56) can be well approximated by a
Gaussian distribution centered at the optimal (most probable) pa-
rameters ðk�;U�; h�Þ and with covariance matrix Rðk;U; hÞ equal
to the inverse of the Hessian of the objective function
Jðk;U; hÞ ¼ � ln pðk;U; hjk̂; Ŵ;CÞ calculated at the optimal pa-
rameters. For details, the expression can be found in Ref. [87].

6 Model Complexity, Sensitivity, Data Fitting

Capability and Robustness

This section discusses the relationship among complexity, out-
put sensitivity, data capability and robustness of identification
model class. This is a very important issue because it plays a
major role on the quality of identification results. Influenced by
the mind of forward modeling, it is easily directed to adopt com-
plicated model classes in order to capture various physical behav-
ior/mechanism. However, the more complex the model class, the
more uncertain parameters are usually introduced unless extra
mathematical constraints of these parameters are imposed. In the
former case, the model output may not necessarily be accurate
even if the model well characterizes the underlying phenomenon/
system since the combination of the many small errors from each
uncertain parameter can induce large output error. Furthermore, it

may lead to an unidentifiable model so the uncertain parameters
cannot be uniquely determined. In the latter case, it is inevitable
that the extra constraints/approximations induce substantial errors.
Therefore, it is important to use a proper model class for paramet-
ric identification purpose. For example, consider a detailed identi-
fication model with thousands of degrees of freedom for a
highrise building. For such a model, there will be a large number
of structural elements (beams, columns, plates, …) associated
with uncertain mass and stiffness parameters. It is obvious that the
model is unidentifiable unless a huge number of sensors are used
to give sufficient constraints to the identification problem. One
way to resolve the identifiability problem is to enforce extra con-
straints so as to reduce the number of uncertain parameters, e.g.,
by assuming rigid floor or grouping the stiffness parameters with
a prescribed proportion. However, such simplification/approxima-
tion will induce modeling error to the identification model.

It is clear that a suitable model class for identification should be
capable to fit the data well and to provide sufficient robustness to
modeling error and measurement noise [140]. Now, an example is
used to illustrate that there is no definite relationship between pos-
terior uncertainty and data fitting capability. Consider an example
of two single-parameter model classes with likelihood functions
satisfying the following relationship for the same set of measure-
ment: pðDjh1 ¼ h;C1Þ ¼ 2pðDjh2 ¼ h;C2Þ so ln pðDjh1 ¼ h;C1Þ
¼ ln pðDjh2 ¼ h;C2Þ þ ln 2. Here, D denotes the measurement; h1

and h2 are the uncertain parameter for model class C1 and C2,
respectively. With the same prior distribution, the posterior distri-
butions and uncertainty of the parameters in these two model
classes are identical since the difference between the log-likeli-
hood functions is a constant (Eq. (14)). However, model class C1

fits the data better as its maximum likelihood value is twice of
that for C2: pðDjh�1;C1Þ ¼ 2pðDjh�2;C2Þ, where h�1 and h�2 are the
optimal parameters for the two model classes. Therefore, the same
level of posterior uncertainty is associated with different levels of
data fitting in this case. This example demonstrates that the degree
of data fitting has no direct relationship with the posterior uncer-
tainty of the parameters.

Posterior uncertainty is a measure of the spread of the posterior
distribution, which is proportional to the product of the prior dis-
tribution and the likelihood function. According to Ref. [87],
small posterior uncertainty is possible to associate with poor data
fitting. On the other hand, sensitivity can be defined as the change
of the model output due to unit parameter perturbation. The slope
of the posterior PDF depends on the sensitivity, which controls
the rate of the change of the model output due to perturbation of
the parameters. On the other hand, posterior uncertainty of the pa-
rameters is controlled by the decaying rate (slope) of the posterior
PDF in the neighborhood around the optimal point. Therefore, it
is particularly important to investigate the sensitivity of a model
around the optimal parameters. If a model class is utilized for
future prediction, it is desirable to obtain a robust model class that
fits the data well even with error in the parameters. In this case,
the maximum likelihood value has to be large and the likelihood
value remains large in a sufficiently large region. In other words,
the topology of the likelihood function around the maximum is
reasonably flat (i.e., the output sensitivity is low).

Figure 1 shows schematically two likelihood functions to dem-
onstrate this relationship. The two likelihood functions are
assumed to be obtained with the same set of measurement but
with different model classes. Model class C1 obviously has larger
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maximum likelihood value than C2, indicating that the optimal
model in C1 fits the data better than that of C2. Furthermore, the
posterior uncertainty of the parameter in C1 is smaller than that of
C2 if the same prior distribution is used. However, if the optimal
models are used for future prediction, model class C2 is more reli-
able since it has a larger parameter range that provides satisfactory
fitting to the data. Therefore, mode class C2 is more robust. On
the other hand, the maximum likelihood margin of C1 may be
insufficient to compensate if the model parameter has tiny error.
Therefore, a reliable model class should have reasonable balance
between data fitting capability and robustness to modeling error.
This example also demonstrates that even for the same number of
parameters, a model class with larger maximum likelihood value
is not necessarily more suitable for parametric identification.

Table 1 shows the four combinations of data fitting capability
and posterior uncertainty. It is desirable to use a model class with
high maximum likelihood value and large posterior uncertainty so
that efficient and robust identification performance can be
expected. However, this is difficult to achieve. Although data fit-
ting capability can be enhanced by adding free parameters, this
will inevitably degrade the robustness of a model class. Therefore,
a suitable model class should possess reasonable balance between
these two properties. It should be noted that the complexity of a
model class depends not only on the number of its adjustable pa-
rameters but also the specific structure of the solution space.

One possible way to rank among prescribed model classes is
the Bayesian model class selection approach, which utilizes the
measurement, D, from the underlying system. Since probability
may be interpreted as a measure of plausibility based on specified
information [141], the posterior plausibility of a model class Cj is
given by [142–144]:

PðCjjDÞ ¼
pðDjCjÞPðCjÞPNC

j¼1

pðDjCjÞPðCjÞ
; j ¼ 1; 2;…;NC (62)

where pðDjCjÞ is the evidence for model class Cj, PðCjÞ is the
prior plausibility of Cj and the denominator is a normalizing con-
stant such that the total posterior plausibility is normalized to be

unity:
PNC

j¼1 PðCjjDÞ ¼ 1. In most applications, uniform prior
plausibility can be taken so the model class selection will rely
solely on the measurement, i.e., PðCjÞ ¼ 1=NC, j ¼ 1;…;NC.

Use hj 2 RNj to denote the uncertain parameter vector in the pa-
rameter space Hj for model class Cj, where Nj is the number of
uncertain parameters. By the theorem of total probability, the evi-
dence of Cj is given by:

pðDjCjÞ ¼
ð

Hj

pðDjhj;CjÞpðhjjCjÞdhj (63)

where pðDjhj;CjÞ is the likelihood function of model class Cj and
pðhjjCjÞ is the prior distribution of the uncertain parameters. For a
large number of data points, the integrand in the evidence integral
in Eq. (63) can be well approximated as an unnormalized Gaus-
sian distribution so this evidence integral can be approximated by
the Laplace’s asymptotic approximation [145]:

pðDjCjÞ � pðDjh�j ;CjÞFj (64)

where pðDjhj;CjÞ is the likelihood function of model class Cj and
pðhjjCjÞ is the prior distribution of the uncertain parameters; h�j is
the optimal parameter vector that maximizes the integrand in Eq.
(63) and the Ockham factor Fj represents the penalty against com-
plicated parameterization [143,146]:

Fj � pðh�j jCjÞð2pÞNj=2jHjðh�j Þj
�1=2

(65)

The matrix Hjðh�j Þ is the Hessian matrix of objective function
� ln½pðDjhj;CjÞpðhjjCjÞ� evaluated at hj ¼ h�j . By Eq. (64), the
evidence of a model class represents the competition between data
fitting capability (measured by the maximum likelihood value
pðDjh�j ;CjÞ) and the robustness of the model class (measured by
the Ockham factor). Hence, the most plausible model class is the
one that possesses the best trade-off between the data fitting effi-
ciency and robustness to modeling error. This approach has been
applied to a number of engineering problems, including architec-
ture of neural networks [105,147], damage detection [148], esti-
mation of fault rupture extent [149]; identification for hysteretic
structural dynamical models [150], air quality modeling [151],
soil compressibility relationship [152], biomedical engineering
[153], environmental effects to structural modal parameters [154],
structural integrity monitoring [155], crack detection [156,157],
and seismic attenuation relationship [158]. For more general cases
in which the Gaussian approximation is inappropriate, one may
use the transitional Markov chain Monte Carlo simulation method
[159] to evaluate directly the evidence integral in Eq. (63).

Next, we examine the Bayesian model class selection approach
accordingly. By Eq. (63), it is clear that the evidence integral is
the standard inner product of the prior distribution and the likeli-
hood function. In order to possess a high value of the evidence, a
good model class should have large likelihood value over a rea-
sonably large region, which overlaps with the significant region of
the prior distribution. Furthermore, the prior distribution values
are important even if a uniform distribution is used and this is in
contrast to parametric identification. In parametric identification,
noninformative prior distribution is often used to let the identifica-
tion rely solely on the likelihood of the data. As long as it is suffi-
ciently flat and covers the significant region of the likelihood
function, the identification results will virtually be independent to
the choice of the prior distribution. Therefore, it is popular to even
absorb the prior distribution into the normalizing constant to
obtain the maximum likelihood solution. However, this is not the
case for model class selection. For example, doubling the range of
a sufficiently wide uniform prior distribution will reduce its proba-
bility density value by half. This will not affect the parametric
identification results but the evidence will be half. If the user has a
lot of experience of a particular model class, the prior information
allows the use of a more concentrated prior distribution of the
uncertain parameters. This leads to a larger value of the evidence

Table 1 Likelihood, posterior uncertainty and robustness

Maximum likelihood value High Low

Large posterior uncertainty Efficient and robust Poor modeling
Small posterior uncertainty Efficient but fragile Poor modeling

Fig. 1 Schematic plot of two likelihood functions
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if the region with significant prior distribution values overlaps
with that of the likelihood function. On the other hand, this
approach does not penalize an unidentifiable model class. Finally,
by examining the example in Fig. 1 again, model class C2 is
preferred by the Bayesian model class selection approach if the
same prior distribution is used for the parameters of both model
classes. It confirms that the Bayesian approach selects the model
class with good data fitting capability and yet with sufficient
robustness.

7 Illustration Example: Structural Response of a

Building Under Severe Typhoon

This example utilizes the response measurement of a 22-story
building, namely the East Asia Hall. It was inaugurated in 2005
for lodging athletes during the 4th East Asian Games hosted in
Macao. Since then, it has been serving as a dormitory of Univer-
sity of Macau. It is a reinforced concrete building of 64.70 m
height, and its floor layer is in L-shape with unequal spans of
51.90 m and 61.75 m. A typical floor plan is shown in Fig. 2. In
contrast to most of the monitored buildings with regular configu-
rations (such as rectangular or circular floor layer) and large
height-to-width aspect ratios [160–163], the East Asia Hall has an
L-shape floor section with aspect ratio close to unity. Due to the
particular geometry of the building, the aerodynamic effect to the
structural behavior is significantly more complex [164,165]. In

this study, its response measurement under a severe typhoon,
namely Hagupit, is analyzed.

On Sept. 14, 2008, a tropical disturbance was formed to the
northeast of Guam and moved towards the Philippines. Being
gradually intensified in the following days, the disturbance
became a tropical storm and it was named Hagupit on Sept. 19.
On the same day, it was upgraded to a tropical storm and it was
approaching southern China. The track of Hagupit is shown in
Fig. 3. Hagupit was dissipated after the landfall was made
between the Guangdong and Guangxi province on Sept. 24. After-
wards, the typhoon signal was cancelled at 16:00 on the same day.
Hagupit had the highest ten-minute sustained wind speed of 165
km/hr and the lowest pressure of 935 hPa. More than 60 people
were killed and the economic loss was estimated to be no less
than 1�109 US dollars. Hagupit was the strongest typhoon
affected Macao since year 2000 and it generated the most severe
wind loading on the East Asian Hall in the history of the building.

Figure 4 shows the wind speed and wind direction observed at
the Meteorological and Geophysical Bureau of Macao. One can
observe that between the 20th to 35th hour, the wind direction
rotated gradually from north to east and then to south. When a ty-
phoon is approaching, the wind speed increases gradually while
the wind direction changes. Once it reaches the closest point to a
city, the wind speed achieves the highest magnitude. Meanwhile,
the wind direction will change drastically if the typhoon is very
close. Therefore, the wind loading generated by a typhoon, and

Fig. 2 A typical floor plan of the East Asia Hall

Fig. 3 Track of Hagupit (provided by the Meteorological and Geophysical Bureau (http://
www.smg.gov.mo/c_index.php) and the time corresponds to GMT 108:00)
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hence the structural response, is considered as a nonstationary sto-
chastic process, especially when the typhoon is close to the city
[166,167]. As shown on the right tails of the figure, the typhoon-
effect was mitigated after the landfall was made and the major
wind direction was recovered to the background prevalent off-
shore wind direction.

Acceleration time histories of the East Asia Hall were recorded
on the 18th story and its direction is shown in Fig. 2. The duration
of the measurement was 43hs which covered the whole duration
of Hagupit, with sampling frequency 500 Hz. Fig. 5 shows the
root-mean-square acceleration and the ten minute-average wind
speed observed in Macao by the Meteorological and Geophysical
Bureau of the Macao government. The rectangular window enclo-
ses the region in which the wind speed exceeded 40 km/hr and the
two arrows indicate the peaks of the wind speed and structural
response. It is observed that the structural acceleration magnitude
on the right boundary of the high-wind-speed window was about

twice of the left boundary, but they are associated with the same
wind speed (40 km/hr). Moreover, the arrows indicate that the
peaks of the RMS acceleration and wind speed did not occur at
the same time. This is caused by the wind attacking angle of the
typhoon. From Fig. 4, the wind direction changed gradually from
north to east and the drag coefficient was increasing in this pro-
cess. Under the same wind speed, larger resultant force was cre-
ated in the later stage so the corresponding structural response
was larger. It turned out that the peak of the structural response
occurred 7 hs after the peak of the wind speed. When the maxi-
mum response was achieved, the wind speed was 20% lower than
its maximum value.

In the present study, the modal parameters of the structure and
the excitation are identified using the Bayesian spectral density
approach for each of the five-minute records in order to trace their
fluctuation. The spectral density estimators are used up to 1.6 Hz,
which is roughly the middle of the first two peaks in the spectrum.
Figure 6 shows the identification results and there are three
curves. The middle one shows the identified modal frequency
using each of the five-minute acceleration record. The identified
modal frequency is referred to the equivalent modal frequency
since the building may not behave perfectly linear, especially
under the severe wind pressure. The intervals between the other
two curves are the confidence intervals with probability 99%. It is
statistically evident that there was notable reduction of the modal
frequency in the high wind speed region and the maximum esti-
mated reduction was 6%. Note that this can be concluded because
the uncertainty of the identified values can be quantified using the
Bayesian method. Such reduction was recovered almost immedi-
ately after the typhoon was dissipated and the ambient conditions
(temperature and humidity) went back to normal situation [168].

The Bayesian fast Fourier transfer approach is also applied to
the same set of measurements. It is not surprising that the results,
including the identified values and the uncertainty estimates, are
virtually the same as those by the Bayesian spectral density
approach. It is because these two frequency-domain methods uti-
lize the same approximation of independency in the same fre-
quency range. The only difference is that the Bayesian fast
Fourier transform approach considers the exact covariance matri-
ces of the fast Fourier transforms while the Bayesian spectral den-
sity approach further approximates the structure of these matrices

Fig. 4 Wind speed and wind direction

Fig. 5 RMS acceleration and mean wind speed
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to obtain the Wishart distribution. However, this approximation is
sufficiently accurate, especially in the frequency range considered,
so the results are practically the same. On the other hand, it should
be noted that the computational effort required by the Bayesian
fast Fourier transform approach is significantly higher than the
Bayesian spectral density approach because the size of the matri-
ces and vectors involved in the former is twice of the latter.

Furthermore, the Bayesian time-domain approach is also
applied to analyze the same set of measurements. As in the Bayes-
ian spectral density approach, the measurement is used up to 1.6
Hz and the response in each five-minute time intervals is assumed
stationary. The truncation variable Np in Eq. (19) is taken as 50 so
that the conditioning data points cover slightly more than one fun-
damental period of this structure. Figure 7 shows the identified

Fig. 6 Identified values of the modal frequency using Bayesian spectral density
approach

Fig. 7 Identified values of the modal frequency using Bayesian time-domain approach
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modal frequencies and the associated confidence intervals in the
same way as Fig. 6. It turns out that there are some discrepancies of
the identified values from the 28th to 32nd hour between the time-
domain and frequency-domain approaches. It is believed that the
results obtained by the latter are more reliable as these frequency-
domain methods are more robust to modeling error, such as linearity
of structures, probability distribution of the input and measurement
noise, stationarity of the response, etc. Moreover, the identified val-
ues by the Bayesian time-domain approach are substantially more

fluctuating in consecutive five-minute intervals during the aforemen-
tioned five hours. On the other hand, the confidence intervals
obtained by the Bayesian time-domain approach are significantly
narrower than the frequency-domain approaches because the former
utilizes all information of the data while the frequency-domain
approaches use only a much narrower frequency band. However,
one should note that these uncertainty estimates do not take into
account the bias induced by the violation of assumptions and this
will be an important subject for further study.

Fig. 8 Identified values of the modal spectral intensity using Bayesian spectral density
approach

Fig. 9 Identified values of the modal frequency versus spectral intensity
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Next, we investigate the modal force spectral intensity and its
relationship with the fundamental frequency of the structure. The
results presented below are based on those obtained by the Bayes-
ian spectral density approach but similar conclusion can be made
using the Bayesian time-domain approach. Figure 8 shows the
corresponding spectral intensity of the modal force. Compared
with the wind speed shown in Fig. 5, it is observed that the spec-
tral intensity had a similar trend with the root-mean-square of the
structural response but not the wind speed. In Fig. 5, the peak of
the wind speed occurred at approximately the 19th hour but the
peak of the structural acceleration occurred approximately 7 hs
later. This confirms that not only the wind speed but also the wind
direction affects the magnitude of the structural response. It can
be further verified by the fact that the peak of structural response
(Fig. 5) and the spectral intensity (Fig. 8) occurred almost at the
same time (approximately the 26th hour).

Figure 9 shows the modal frequency versus the spectral inten-
sity of the modal force in the semilogarithmic scale. The modal
frequency decreased as the spectral intensity of the modal force
increased. In other words, the structural stiffness was degraded
when the excitation was at high level. However, there is no evi-
dence for structural damage since such loss was recovered after
the typhoon was dissipated. One possible explanation is that the
structure went through nonlinear or even hysteretic behavior so
the identified modal frequency of the equivalent linear system was
reduced [169–172].

8 Conclusion

In this paper, some recently developed Bayesian model updat-
ing methods were introduced. Bayesian inference is useful for
uncertainty quantification of identification problems. The intro-
duced methods can be categorized into two types: using response
measurements and using modal measurements. The Bayesian
time-domain approach utilizes an approximated probability den-
sity expansion and it can handle both stationary and nonstationary
response measurement. The Bayesian spectral density approach
and Bayesian fast Fourier transform approach are frequency-do-
main methods. They make use of the statistical properties of dis-
crete Fourier transform and they can handle stationary response of
linear and nonlinear systems. Another model updating method
that uses modal measurements was also introduced. An important
feature of this approach is that it does not proceed with the com-
monly required mode matching. This is important as the measured
modes are not necessarily the lowest ones and their order may be
unknown. An application of a 22-story building subjected to
severe typhoon was presented. Reduction of the modal frequency
was observed when the wind speed was over 40 km/hr. The com-
parison could be made because the uncertainty level of the estima-
tion could be quantified. The Bayesian methodology is necessary
in this type of application which requires comparison of the iden-
tified parameters. Finally, comments were made on the suitability
of model class for identification.
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