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Bayesian model class selection has attracted substantial interest in recent years for selecting the most
plausible/suitable class of models based on system input–output data. The Bayesian approach provides
a quantitative expression of a principle of model parsimony or of Ockham’s razor which in engineering
applications can be stated as simpler models are to be preferred over unnecessarily complicated ones.
In this paper, some recent developments are reviewed. Linear and nonlinear regression problems are con-
sidered in detail. Bayesian model class selection is particularly useful for regression problems since the
regression formula order is difficult to be determined solely by physics due to its empirical nature. Appli-
cations are presented in different areas of civil engineering, including artificial neural network for dam-
age detection and seismic attenuation empirical relationship.
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1. Introduction

The usual approach in system identification is to find the best/
optimal model in a prescribed class of models, e.g., class of shear
building models with uncertain inter-story stiffnesses or class of
quadratic polynomials with uncertain coefficients to be identified.
This problem is commonly referred to as parametric identification.
The more general problem of model class selection has not been
well explored in system identification. It is obvious that a more
complicated model class often fits the data better than one which
has fewer adjustable uncertain parameters. Therefore, if the opti-
mal model class is chosen by minimizing a norm of the fitting er-
ror between the output data and the corresponding predictions by
the optimal model in each model class, the choice will tend to the
ones with more effective free parameters. This approach is there-
fore likely to lead to over-fitting the data. When an over-fitted
model is used for future prediction, it leads to poor results be-
cause the model parameters depend too much on the detail of
the data and the measurement noise has an important role in
the data fitting. Therefore, in model class selection, it is necessary
to penalize a complicated model but the quantification of this
penalty is not a trivial task. This point was recognized by Jeffreys
who did pioneering work on the application of Bayesian methods
[12]. In the present context, the selected class of models should
agree closely with the observed behavior of the system but other-
wise be as simple as possible. In recent years, there has been a re-
ll rights reserved.
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appreciation of the work of Jeffreys on the application of Bayesian
methods. In particular, the Bayesian approach to model class
selection has been further developed by showing that the evidence
for each model class provided by the data automatically enforces
a quantitative expression of a principle of model parsimony or of
Ockham’s razor [10,20,21]. There is no need to introduce ad hoc
penalty as in some of the earlier work on model class selection.

There are many types of uncertainty involved in civil engineer-
ing problems, such as materials, excitation, modeling, emission,
and traffic loading. Therefore, there is great demand on explicit
treatment of these uncertainties in civil engineering applications
and Bayesian analysis is suitable for the need. However, Bayesian
applications in civil engineering are still in the early stage so
there is great potential for exploration [24]. In this paper, some
recent developments and civil engineering applications of Bayes-
ian model class selection are reviewed. In the next section, the
Bayesian model class selection method is revisited. It is illustrated
for globally identifiable case with asymptotic expansion and for
general case with the transitional Markov chain Monte Carlo
(TMCMC) method [7]. Special cases of linear and nonlinear
regression are considered in detail in Section 3. Bayesian model
class selection is particularly useful for the selection of regression
formula since the structure of the empirical relationship is diffi-
cult to be determined by the physics of the phenomenon alone.
In Sections 4 and 5, applications are presented for two areas in
civil engineering, including artificial neural network structure de-
sign and seismic attenuation empirical relationship. Other appli-
cations in the modeling of particulate matter concentration [11]
and soil compressibility index empirical relationships [22] have
also been studied.

http://dx.doi.org/10.1016/j.strusafe.2010.03.011
mailto:kvyuen@umac.mo
http://www.sciencedirect.com/science/journal/01674730
http://www.elsevier.com/locate/strusafe
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2. Bayesian model class selection

Use D to denote some input–output measurements from a
physical phenomenon/system. The goal is to use D to select the
most plausible/suitable class of models representing the phenom-
enon/system among NC prescribed model classes C1; C2; . . . ; CNC .
Since probability may be interpreted as a measure of plausibility
based on specified information [9], the plausibility of a model class
conditional on the data D can be obtained by using the Bayes’
theorem:

PðCjjDÞ ¼
pðDjCjÞPðCjÞ

pðDÞ ; j ¼ 1;2; . . . ;NC ð1Þ

where pðDÞ ¼
PNC

j¼1pðDjCjÞPðCjÞ by the theorem of total probability
and PðCjÞ expresses the user’s judgement on the initial plausibility
of the model classes with

PNC
j¼1PðCjÞ ¼ 1. The factor pðDjCjÞ is called

the evidence for the model class Cj provided by the data D. The most
plausible model class is the one that maximizes pðDjCjÞPðCjÞ.

The evidence for Cj provided by the data D can be obtained from
the theorem of total probability:

pðDjCjÞ ¼
Z

H
pðDjh; CjÞpðhjCjÞdh; j ¼ 1;2; . . . ;NC ð2Þ

where h is the parameter vector in the parameter space H � RNj and
it defines each model in Cj. The parameter vector h and the param-
eter space H depend on the model class Cj even though it is not
explicitly reflected in the symbol. This is done for the purpose of
simplifying the notation only. The prior PDF pðhjCjÞ is specified by
the user based on engineering judgement and pðDjh; CjÞ is the like-
lihood function that represents the contribution of the data in the
updating process. Some examples of the establishment of the like-
lihood function for structural dynamics problems can be found in
[14,28,26,25,29,27].

2.1. Globally identifiable case

In globally identifiable cases [2], the posterior/updated PDF,
pðhjD; CjÞ, for the uncertain parameters given a large amount of
data may be approximated accurately as Gaussian, so the evidence,
pðDjCjÞ, can be approximated by asymptotic approximation [3]:

pðDjCjÞ � pðDjhH; CjÞpðhHjCjÞð2pÞ
Nj
2 jHjðhHÞj�

1
2;

j ¼ 1;2; . . . ;NC ð3Þ

where Nj is the number of uncertain parameters for the model class
Cj. The optimal/updated parameter vector hH is the most probable
value, that maximizes pðhjD; CjÞ in the interior of H, and HjðhHÞ is
the Hessian matrix of the objective function � ln½pðDjh; CjÞpðhjCjÞ�
with respect to h evaluated at hH. The maximum likelihood value,
pðDjhH; CjÞ, in Eq. (3) will be higher for those model classes that
make the probability of the data D higher, or equivalently, those
which give better fitting to the data. As mentioned earlier, this like-
lihood function favors model classes with more effective uncertain
parameters.

Except for the maximum likelihood value in Eq. (3), the product
of the remaining factors is called the Ockham factor [10,20]:

Oj ¼ pðhHjCjÞð2pÞ
Nj
2 jHjðhHÞj�

1
2 ð4Þ

It represents a penalty against complicated parameterization. It
was shown that the Ockham factor decreases exponentially with
the number of uncertain parameters in the model class and the
log Ockham factor is given by [3]:

lnOj ¼ �
1
2

Nj ln N þRj ð5Þ
where the remainder Rj depends primarily on the choice of prior
PDF and is of order 1 for large N. If the number of data points N
in D is large, the likelihood function will be the dominant one in
Eq. (3) because it increases exponentially with N, while the Ockham
factor behaves as N�1 [23].

The Ockham factor can be further elaborated. It follows from
Bayes’ theorem that the exact relationship is given by

pðDjCjÞ ¼ pðDjhH; CjÞpðhHjCjÞ=pðhHjD; CjÞ ð6Þ

By comparing this equation with Eq. (3), the Ockham factor is
approximately equal to the ratio pðhHjCjÞ=pðhHjD; CjÞ which is al-
ways less than unity if the data provides any information about
the model parameters. For large N, the negative logarithm of this
ratio is an asymptotic approximation of the information about h

provided by data D [16]. Therefore, the log Ockham factor removes
the amount of information about h provided by D from the log like-
lihood, ln pðDjhH; CjÞ, to give the log evidence, ln pðDjCjÞ.
2.2. General case

For the general case where the posterior PDF may not be
approximated by Gaussian distribution, the asymptotic expansion
in Eq. (3) is not valid. In general, the log evidence is equal to the
difference of two integrals [8]:

ln pðDjCjÞ ¼
Z

H
½ln pðDjh; CjÞ�pðhjD; CjÞdh

�
Z

H
ln

pðhjD; CjÞ
pðhjCjÞ

� �
pðhjD; CjÞdh ð7Þ

The first integral is a measure of the average log goodness-of-fit
of the model class Cj and the second is the relative entropy be-
tween the prior and posterior PDFs [17]. The latter quantity is
the information gained about the parameters by the data D. There-
fore, Eq. (7) states that the log evidence of a model class is equal to
the average log goodness-of-fit, penalized by the information
gained on the model parameters. Small uncertainty of the model
parameters is the consequence of high model output sensitivity
due to changes in the model parameters. However, this does not
necessary give a good model class for future prediction because
the model output may be too sensitive to parametric and modeling
error. On the other hand, a robust model class for future prediction
should have good data fitting capability and small output differ-
ence due to perturbation of the model parameters.

For locally identifiable case or unidentifiable case, the asymp-
totic expansion in Eq. (3) is not applicable and the transitional
Markov chain Monte Carlo algorithm [7] can be used for evidence
computation. It is a method for sampling the posterior PDF of a
model class and it was developed under the concept of an adaptive
Markov chain Monte Carlo simulation procedure [1]. First, a se-
quence of un-normalized intermediate PDFs, PsðhÞ; s ¼ 0;1; . . . ;

s0, is constructed:

PsðhÞ / pðDjh; CjÞbs pðhjCjÞ ð8Þ

where bs increases monotonically with s such that b0 ¼ 0 and
bs0
¼ 1. Samples of the model parameters are generated according

to each intermediate PDF, PsðhÞ; s ¼ 0;1; . . . ; s0.
The resampling weighting for each sample is the ratio of the tar-

get PDFs for the sth and ðs� 1Þth levels, evaluated at hðs�1Þ
n :

w hðs�1Þ
n

� �
¼

p Djhðs�1Þ
n ; Cj

� �bs p hðs�1Þ
n jCj

� �
p Djhðs�1Þ

n ; Cj
� �bs�1 p hðs�1Þ

n jCj
� � ¼ p Djhðs�1Þ

n ; Cj
� �bs�bs�1 ð9Þ

Finally, the evidence pðDjCjÞ can be estimated by the sample
average of the resampling weightings:
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pðDjCjÞ ¼
R

H pðDjh; CjÞpðhjCjÞdhR
H pðhjCjÞdh

¼
Ys0

s¼1

Ws ð10Þ

where the quantities Ws; s ¼ 1;2; . . . ; s0, are estimated by

Ws �
1
N

XN

n¼1

w hðs�1Þ
n

� �
ð11Þ

For details, please refer to Ching and Chen [7].

3. Regression problems

3.1. Linear regression problems

A general linear regression formula of a quantity of concern, Q,
can be written as

Qðx; b; CjÞ ¼
XNb

l¼1

blxl ð12Þ

where x ¼ ½x1; x2; . . . ; xNb
�T is a known vector including the mea-

sured variables used in establishing the regression formula; and
b ¼ ½b1; b2; . . . ; bNb

�T 2 RNb is the vector of the unknown coefficients
to be identified. The measurement of Q can be written as

y ¼ Qðx; b; CjÞ þ � ð13Þ

where � is a Gaussian random variable with zero mean and variance
r2
� . It is used to represent the measurement noise and modeling er-

ror. The uncertain parameters in h include the coefficients bl’s and
the prediction-error variance r2

� so Nj ¼ Nb þ 1.
The data D includes the measurement of x and the correspond-

ing values for y. By assuming that the prediction errors in different
records are statistically independent, the likelihood function is
obtained:

pðDjh; CjÞ ¼ ð2pÞ�
N
2r�N

� exp � N
2r2

�
JgðbjD; CjÞ

� �
ð14Þ

where N is the total number of measured records. The goodness-of-
fit function JgðbjD; CjÞ represents the level of data fitting, which is
given by

JgðbjD; CjÞ ¼
1
N

XN

n¼1

yðnÞ �
XNb

l¼1

blxlðnÞ
" #2

ð15Þ

A smaller value of this function implies better fitting to the data.
In the case of a uniform prior PDF of the coefficients, the optimal
coefficient vector bH can be obtained by minimizing JgðbjD; CjÞ. This

is done by solving the linear algebraic equation: @Jg ðbjD;CjÞ
@b ¼ 0, and

the updated coefficient vector is readily obtained:

bH ¼ A�1

PN
n¼1x1ðnÞyðnÞPN
n¼1x2ðnÞyðnÞ

..

.PN
n¼1xNb

ðnÞyðnÞ

2666664

3777775 ð16Þ

where A is an Nb � Nb symmetric matrix and its ðl; l0Þ component is
Aðl;l

0 Þ ¼
PN

n¼1xlðnÞxl0 ðnÞ. Furthermore, the updated fitting-error vari-
ance r2

�
H can be obtained by maximizing the likelihood function

pðDjh; CjÞ:

r2
�

H ¼min
b

JgðbjD; CjÞ ¼ Jgðb
HjD; CjÞ ð17Þ

It is simply the variance of the fitting error.
For large N, the posterior PDF pðhjD; CjÞ is approximately Gauss-

ian centered at the optimal parameter hH ¼ bHT
;r2I

�

h iT
. Therefore,

the uncertainty of the parameter estimates can be represented by
the covariance matrix given by Rh ¼ HjðhHÞ�1, where the Hessian
matrix HjðhHÞ is given by

HjðhHÞ ¼ 1
r2I
�

A 0Nb�1

01�Nb
2N

� �
ð18Þ

The diagonal elements of the covariance matrix Rh are the mar-
ginal variance of the corresponding element of h and the quantifi-
cation of the uncertainty of the model parameters can be used for
the uncertainty analysis of the prediction. Finally, by using the
asymptotic expansion in Eq. (3), the evidence pðDjCjÞ can be
computed:

pðDjCjÞ ¼ pðhHjCjÞ exp �N
2

� �
rH

�
Nj�Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2pÞN�Nj NjAj
q ð19Þ
3.2. Nonlinear regression problems

Instead of the linear regression formula in Eq. (12), the class of
nonlinear regression formulae is considered in this section. There is
generally no closed-form solution of the updated model parame-
ters in contrast to the linear case. The following efficient algorithm
may be used to search for the updated parameters. First of all, a
nonlinear regression formula of a target quantity, Q, takes the fol-
lowing general form:

Qðx; b; c; CjÞ ¼ f ðc; xÞ þ
XNb

l¼1

blflðc;xÞ ð20Þ

where f and fl’s are the functions specified by the user but with un-
known coefficients in c. The measurement of Q is given by

y ¼ Qðx; b; c; CjÞ þ � ð21Þ

where the fitting/prediction error � is again modeled as zero-mean
Gaussian random variable with variance r2

� . Similar to Eq. (14), the
likelihood function is given by

pðDjh; CjÞ ¼ ð2pÞ�
N
2r�N
� exp � N

2r2
�

Jgðb; cjD; CjÞ
� �

ð22Þ

where the goodness-of-fit function is

Jgðb; cjD; CjÞ ¼
1
N

XN

n¼1

yðnÞ � f ðc;xðnÞÞ �
XNb

l¼1

blflðc;xðnÞÞ
" #2

ð23Þ

As in the linear case, a uniform prior for all the uncertain
parameters is taken. Given a particular parameter vector c0 for c,
one can compute the conditional optimal value for b in a similar
fashion as Eq. (16):

bHðc0Þ ¼ A�1

PN
n¼1f1ðc;xðnÞÞ½yðnÞ � f ðc0;xðnÞÞ�PN
n¼1f2ðc;xðnÞÞ½yðnÞ � f ðc0;xðnÞÞ�

..

.PN
n¼1fNb

ðc;xðnÞÞ½yðnÞ � f ðc0;xðnÞÞ�

2666664

3777775 ð24Þ

and the conditional optimal value for r2
� is given by

r2
�

Hðc0Þ ¼ min
b

Jgðb; c0jD; CjÞ ¼ Jgðb
H
; c0jD; CjÞ ð25Þ

By maximizing numerically the goodness-of-fit function in Eq.
(23) with respect to c, the updated model parameters can be ob-

tained: hH ¼ bHT
; cHT ;r2H

�

h iT
. Therefore, the availability of the

closed-form solution of the conditional optimal parameters allows
one to reduce the original optimization problem with Nb þ Nc þ 1
parameters to the problem with Nc parameters only.
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The evidence can be estimated by the following Monte Carlo
simulation algorithm. Note that the optimal parameters in c are
not required. The integrand of the evidence integral in Eq. (2)
may have complex topology for nonlinear regression formula.
However, it can be rewritten as

pðDjCjÞ ¼
Z

C
IðcjCjÞpðcjCjÞdc ð26Þ

if the prior distribution is separable:
p b; c;r2

� jCj
� �

¼ p b;r2
� jCj

� �
p cjCj
� �

. In this integral, C is the domain
for c and IðcjCjÞ is given by

IðcjCjÞ ¼
Z 1

0

Z
B

pðDjh; CjÞpðb;r2
� jCjÞdbdr2

� ð27Þ

This integral can be evaluated in the same way as in Eq. (19):

IðcjCjÞ ¼ p bHðcÞ;r2I

� ðcÞjCj

	 

exp �N

2

� �
rH

�
Nbþ1�Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2pÞN�Nb�1NjAj
q ð28Þ

where bHðcÞ and r2I

� ðcÞ are the conditional optimal values given by
Eqs. (24) and (25). The dimension of the original integral is reduced
to Nc and it can be estimated efficiently by Monte Carlo simulation:

pðDjCjÞ ¼ EpðcjCjÞIðcjCjÞ ¼
1
Ns

XNs

s¼1

IðcðsÞjCjÞ ð29Þ

with independent samples cðsÞ; s ¼ 1;2; . . . ;Ns, simulated according
to the prior PDF pðcjCjÞ.

4. Application to artificial neural network
and damage detection

4.1. Problem description

In this section, the Bayesian model class selection approach is
applied to structural health monitoring using Artificial Neural Net-
work (ANN) with dynamic data. ANNs are employed for pattern
matching in order to detect damage locations and estimate their
severity. It is obvious that the selection of the class of ANN models,
i.e., the number of hidden layers and the number of hidden neu-
rons in each layer, has crucial effects on its performance. However,
these numbers are usually selected by experience or rule of thumb
only. In this section, the Bayesian method is applied to select the
most plausible class of ANN models. The damage detection method
presented here consists of two phases. The damage locations are
identified in the first phase using an ANN with damage signatures
as the inputs. In the second phase, the severity of the damage iden-
tified in the first phase is estimated by another ANN with modal
parameter changes as the inputs. These ANNs are designed by
the Bayesian model class selection method.

4.2. Pattern matching and damage signature

The idea of pattern matching is to use some prescribed quanti-
ties (e.g., a set of modal parameters) as an indicator (ID) of each
possible damage case of the structure. If the IDs for all possible
damage cases are computed and matched with the measured ID,
the damage case corresponding to the best fitting ID is considered
as the most probable damage case. A very large database is re-
quired to store all the IDs as the number of IDs is huge in practice.
Specifically, one needs to consider different number of damage
locations and different damage extent. The required computational
time and storage space make this approach prohibitive. For in-
stance, let’s consider a five-story building with five possible dam-
age locations and five damage levels for each possible damage
location. There are 20, 160, 640, 1280, and 1024 possible damage
patterns for one to five damage locations, respectively. The total
number of damage patterns is 3125 (=55, including the undamaged
case) for such a simple structure. This number increases drastically
with the number of possible damage locations and levels. A possi-
ble solution is to proceed in two phases. The damage locations are
identified in the first phase, while the corresponding damage ex-
tent will be estimated afterwards.

Structural damage induces changes in modal parameters. Dam-
age signature is defined as the ratio of the change of eigenvector of
some selected modes to the change of the eigenvalue of a reference
mode [18]:

bW ¼ 1

DbX2
r

D bU ð30Þ

where D denotes the difference of a quantity between the undam-

aged and the possibly damaged structure; bXr is the measured nat-

ural frequency of a reference mode; bU is the vector comprised of
the measured mode shapes for all selected modes:bU ¼ /̂T

1; /̂
T
2; . . . ; /̂T

Nm

n oT
, where /̂m is the measured mode shape of

the mth selected mode ðm ¼ 1;2; . . . ;NmÞ and Nm is the total num-
ber of selected modes. Damage signatures depend only on the dam-
age locations and the relative damage extent but not the absolute
extent. With the finite-element models of the structure, the eigen-
values and eigenvectors of the undamaged and damaged structures
can be computed. These theoretical damage signatures for different
damage cases are readily obtained in a similar manner as Eq. (30):

WðnÞ ¼ 1
DX2

r ðnÞ
DUðnÞ for n ¼ 1;2; . . . ;N ð31Þ

where n is the index of damage cases; and N is the total number of
possible damage cases. Then, the measured damage signatures in
Eq. (30) are matched with the theoretical damage signatures in
Eq. (31). By using the damage signature, the number of possible pat-
terns for locating damage is significantly reduced. For the five-story
building, the number of damage patterns is reduced to 5, 10, 10, 5
and 1 for damage cases for one to five damage locations, respec-
tively. The total number of patterns (including the undamaged
and damaged cases) is reduced from 3125 to 32.

4.3. Artificial neural networks based damage detection

In the first phase, the ANN is trained by using the theoretical
damage signatures for all possible damage cases for a given dam-
age level as inputs and the corresponding damage location index
vector as targets. The damage location index vector is defined as
L ¼ fL1; L2 . . . ; LNLg, where NL is the number of all possible damage
locations, and Lk is the damage location index for the kth possible
damage location. An index of value 1 (0) implies that the corre-
sponding location is damaged (undamaged). Due to the generaliza-
tion property of ANNs, the trained ANN can be used to estimate/
approximate the damage location index vector of the damaged
structure by feeding the measured damage signature to the trained
ANN. In general, the more input–target pairs employed in the
training process, the higher the generalization ability of the trained
ANN. After identifying the possible damage locations in the first
phase, the damage extent of each identified damage location can
be estimated using another ANN in the second phase. Changes of
modal parameters and the corresponding damage extent index
vector will be treated as input–target training pairs for the ANN
in the second phase. This damage extent index vector is defined
as E ¼ fE1; E2 . . . ; ENEg, where NE is the number of damage locations
identified in the first phase. In general, NE is much smaller than the
number of possible damage locations NL. Ek is the damage extent
index for the kth damage location identified in the first phase.



Table 1
ANN outputs for single-damage cases with 20% reduction of inter-story stiffness.

Story Damage case

1 2 3 4 5

1 1.00 �0.01 �0.01 �0.01 �0.01
2 0.07 0.99 0.16 0.18 0.20
3 0.11 0.06 1.43 0.39 0.56
4 0.03 �0.02 0.18 1.26 0.25
5 0.01 �0.04 �0.02 �0.01 1.08
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The value of Ek, in the range from 0 to 1, indicates the percentage
reduction of stiffness at the corresponding damage location. Since
it is necessary to consider only the possible damage locations de-
tected in the first phase, the total number of training pairs for
the ANN in the second phase is reduced to a reasonable level.

4.4. Selection of ANN models with suitable complexity

ANN design here is referred to the determination of the number
of hidden layers and the number of neurons in each hidden layer
[30,19]. Here, NI and NO are the number of the neurons in the input
and output layers, respectively. Let D denote the set of input–tar-
get data for ANN training. Different classes of ANN models corre-
spond to models with different number of hidden layers and/or
different numbers of neurons in the hidden layers.

Let h 2 RNj denote the unknown parameter vector (including
the weights, biases and prediction-error parameter) of an ANN.
The likelihood function is given by

pðDjh; CjÞ ¼ ð2pÞ�
NNO

2 r�NNO
� exp �NNO

2r2
�

JgðhjD; CjÞ
� �

ð32Þ

where r� is the standard deviation of the target error; and N is the
total number of training pairs, which is taken as the total number of
possible damage cases. The goodness-of-fit function JgðhjD; CjÞ in Eq.
(32) is given by

JgðhjD; CjÞ ¼
1

NNO

XN

n¼1

kbOðnÞ � Oðn; h; CjÞjj2 ð33Þ

where Oðn; h; CjÞ is the ANN output of the nth input for a given set of
ANN parameters h and ANN model class Cj; bOðnÞ is the target of the
ANN for the nth input (the output O is the damage location index
vector L for the first phase and it is the damage extent index vector
E for the second phase); and k � k denotes the Euclidean norm of a
vector. In the case of a uniform prior, the optimal parameter vector
hH is equivalently obtained by minimizing JgðhjD; CjÞ. Furthermore,
the optimal fitting-error variance r2

�
H can be obtained by maximiz-

ing the likelihood function pðDjh; CjÞ and it is given by
r2
�

H ¼minhJgðhjD; CjÞ ¼ JgðhHjD; CjÞ.

4.5. Applications to damage detection of a five-story building

A five-story building is used to demonstrate the Bayesian ANN
design and damage detection method. The structure is classically
damped with 2.0% damping ratio for all modes and it has uniform
distribution of the floor mass and story stiffness. Its natural fre-
quencies are: 1.43, 4.18, 6.59, 8.47 and 9.66 Hz.

4.5.1. Phase I: detection of damage locations
Damage is defined as the reduction of inter-story stiffness. The

damage location index vector consists of five elements corre-
sponding to the five stories ðNL ¼ 5Þ. The number of input–target
pairs for training is N ¼ 32, as explained in Section 4.2. Based on
the shear building model, natural frequencies and mode shapes
of the undamaged and damaged structures can be calculated.
To simulate damage in a story, 50% reduction of the inter-story
stiffness is introduced. Here, only the first mode is used to com-
pute the damage signature and the ANN has five input neurons
and five output neurons ðNI ¼ NO ¼ 5Þ. In this example, only
one hidden layer ANNs are considered so the ANN design prob-
lem is reduced to the decision of the number of hidden neurons,
n1. A rule of thumb is used for comparison: n1 ¼ ðNI þ NOÞ=2þ a,
where a is 1 or 2 [15]. In this case, n1 can be taken as 6 or 7.
Here, four candidate classes of ANN models, with n1 = 5, 6, 7
and 8, are considered. The values of the fitting-error parameter
rH

� of these model classes are 0.060, 0.027, 0.023, and 0.019
but the class of ANNs with six neurons has dominant plausibility,
which is virtually 1.0. The model classes with more hidden neu-
rons have relatively smaller values of the fitting-error parameter
rH

� , implying better fitting of the input–target training pairs, but
not necessarily higher plausibility. It shows clearly that it is not
appropriate to select a model class by comparing the values of
the fitting-error parameter alone.

In order to examine the capability of the trained ANN, measured
damage signatures for different damage cases are obtained. Five
percent root-mean-square discrete white noise is added to the sim-
ulated acceleration time histories of the structure subjected to wide
band excitation. The fundamental frequency and mode shape can
then be estimated from the measured frequency spectra. The
trained ANN is first examined for 20% damage in a single story,
which is different from the 50% assumed in the training process.
The outputs (damage location index vector L) of the ANN are sum-
marized in Table 1. Damage Cases 1–5 represent the damage loca-
tions in the first to fifth story, respectively. A damage location index
with value close to unity indicates that the corresponding story is
damaged. For an undamaged location, the corresponding damage
location index is close to zero. The ANN approximated damage loca-
tion index vectors indicate successfully the correct damage
locations.

Next, the trained ANN is tested by different damage extent in
the second and third story of the building. Nine damage cases
are considered. In all cases, the damage of the second story is taken
to be 50% while the damage of the third story is considered from
10% to 90% with step size 10%. The ANN outputs are shown in Table
2. The Damage Case x2=x3 refers to x2% and x3% damage of the sec-
ond and the third story, respectively. It is clearly seen that the ANN
approximated damage location index vector can indicate both
damage locations when they have similar damage extent (e.g.,
Damage Cases 50/40, 50/50 and 50/60). Otherwise, only the loca-
tion with larger damage extent can be detected, e.g., Damage Cases
50/10 and 50/90.
4.5.2. Phase II: quantification of damage extent
The changes of modal frequencies and mode shapes are used as

ANN inputs in the second phase. Again, only the first mode is em-
ployed and the measured mode shape is normalized such that the
element corresponding to the top floor is unity. Since the unity ele-
ment contains no information, it is not employed as an ANN input.
Therefore, the total number of ANN inputs is 5 ðNI ¼ 5Þ including
four components of the mode shape and one modal frequency.
Two cases are considered to illustrate the procedures of the second
phase. The number of ANN outputs is equal to the number of dam-
age locations detected in the first phase.

The first case considers 20% damage in the second story and this
corresponds to the Damage Case 2 in Table 1. Based on the finite-
element model, changes of modal parameters due to damage of the
second floor with 10%,20%, . . . ,70% reduction of the inter-story
stiffness are calculated. The modal parameter changes are used
as the ANN inputs, while the corresponding percentage reduction
of stiffness is the ANN output. The seven sets of input–target pairs



Table 2
ANN outputs for the case with damage at two different stories.

Damage case Story

1 2 3 4 5

50/10 �0.01 1.00 0.22 �0.01 �0.01
50/20 �0.00 1.01 0.44 �0.00 �0.00
50/30 �0.00 1.01 0.68 0.01 0.00
50/40 0.00 1.01 0.91 0.02 �0.00
50/50 0.00 0.99 1.07 0.02 �0.01
50/60 0.00 0.93 1.17 0.03 �0.02
50/70 0.00 0.80 1.22 0.04 �0.02
50/80 �0.00 0.56 1.21 0.03 �0.02
50/90 �0.01 0.25 1.09 �0.03 �0.03
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are employed for training an ANN to estimate the damage extent
ðN ¼ 7Þ. There are five ANN inputs and one ANN output. Based
on the Kermanshahi’s rule of thumb, the number of hidden neu-
rons may be 4 or 5. However, by the Bayesian approach, the most
plausible model class is the one with one hidden neuron ðn1 ¼ 1Þ
and its plausibility is close to unity. This is different from the sug-
gestion by the Kermanshahi’s rule of thumb, which is based on the
numbers of ANN inputs and outputs only. However, the rule ne-
glects other important factors, such as the number of input–target
training pairs and the complexity of the function to be approxi-
mated. The ANN with only one hidden neuron is used in the second
phase to detect the damage extent of the second story. The mea-
sured modal parameters of both the undamaged and damaged
structures can be obtained from the simulated noisy dynamic data.
The changes of modal parameters due to the damage can then be
calculated and fed into the trained ANN. The ANN output is
19.68%, which is close to the correct damage extent (20%).

The second case considers 50% and 30% damage of the second
and third story, respectively. This corresponds to Damage Case
50/30 in Table 2. Similar to the single-damage case, damage levels
from 10% to 70% with step size 10% are considered for the input–
target training pairs. Therefore, 49 input–target pairs are employed
in the training process ðN ¼ 49Þ. It turned out that the most plau-
sible class of models is the one with three hidden neurons ðn1 ¼ 3Þ
and the plausibility is close to unity. Therefore, it is employed to
estimate the damage extent of the two damage locations. The
changes in modal parameters are fed to the trained ANN and the
outputs are 50.29% and 29.54% for the second and third story,
respectively. Again, the damage detection methodology success-
fully estimates the damage locations and severity.
5. Application to seismic attenuation relationship

5.1. Problem description

Prediction of peak ground acceleration (PGA) has received great
attention in the society of civil engineering and engineering seis-
mology for decades. Significant amount of work can be found in
predicting the PGA using the magnitude of earthquake, station-
to-hypocenter distance, and the properties of the site foundation
[13,5,4]. In particular, the Boore–Joyner–Fumal seismic attenuation
formula is well-known for estimation of the PGA [4]:

log10PGA ¼ b1 þ b2ðM �M0Þ þ b3ðM �M0Þ2

þ b4r þ b5log10r þ b6GB þ b7GC ð34Þ

where M is the moment magnitude of an earthquake; M0 is a shift-
ing constant and M0 ¼ 6 was used in Boore et al. [4]; r is the obser-
vation station-to-hypocenter distance (in kilometer); GB and GC are
site foundation classification variables: GB ¼ 1 for class B and 0
otherwise, and GC ¼ 1 for class C and 0 otherwise (the classification
of foundation will be discussed further in Section 5.3.1).

The predictive model in Eq. (34) is empirical. One may wonder if
a more reliable model can be obtained by adding/erasing terms or
by considering a different functional form. A good predictive model
class should have good capability on fitting the strong-motion re-
cords and at the same time be insensitive to observation and mod-
eling error. In this section, the regression formula given in Boore
et al. [4] is examined. Thirty-two model classes are constructed
by including subsets of terms in the regression formula in Eq.
(34). The Bayesian model class selection approach is applied to
select among these 32 model classes. A database of 249 strong-
motion records from the China Earthquake Data Center [6] is
utilized for this study.
5.2. Selection of the predictive model class

In order to examine the suitability of the predictive model
class in Eq. (34) and to propose the most suitable one, model
class candidates are constructed. Here, predictive model classes
are considered in a similar functional form of Eq. (34) but to in-
clude different combinations of terms in different model classes.
First of all, the constant b1 is necessary to serve as a scaling factor
so all model classes contain b1. As will be discussed later in Sec-
tion 5.3.1 that only strong-motion records with moment magni-
tude M > 3:5 are utilized, M0 ¼ 3:5 is taken in this study. For
the site properties, both terms (b6GB and b7GC) are either included
or not included at the same time. As a result, there are totally
25 = 32 model class candidates, namely C1; C2; . . . ; C32. To summa-
rize, all the candidate model classes include the constant b1 and
different model classes include different combinations of the fol-
lowing five groups: b2ðM �M0Þ; b3ðM �M0Þ2; b4r; b5log10r, and
b6GB þ b7GC .

Let D denote the data that includes the PGA and the corre-
sponding earthquake magnitude, observation station-to-hypocen-
ter distance and site foundation properties. A predictive formula
in any model class Cj, which includes subsets of terms of Eq. (34),
can be written as

log10PGAðx; b; CjÞ ¼
XNb

l¼1

blxl ð35Þ

This falls into the category of linear regression problem in Sec-
tion 3.1. The variables x1; x2; . . . ; xNb

in this case are the corre-
sponding data, i.e., 1, M �M0; ðM �M0Þ2; r; log10r; GB and GC .
Note that the first Nj � 1 components of the uncertain parameter
vector are the uncertain formula coefficients bl and hNj

is r2
� . In

this study, a flat prior PDF is used for not biasing the results prior
to the data. The goodness-of-fit function JgðbjD; CjÞ in Eq. (15) is
given by

JgðbjD; CjÞ ¼
1
N

XN

n¼1

½log10PGAoðnÞ � log10PGAðxðnÞ; b; CjÞ�2 ð36Þ

where PGAðxðnÞ; b; CjÞ is the model predicted PGA and PGAoðnÞ is its
corresponding observed value. Since a flat prior PDF is used, the
closed-form solution of the optimal coefficient vector bH can be ob-
tained by Eq. (16) with yðnÞ ¼ log10PGAoðnÞ. Similarly, the most
plausible value of the predictive/fitting-error variance is given by
r2H

� ¼min
b

JgðbjD; CjÞ ¼ Jgðb
HjD; CjÞ. It is attempted to use D to select

the most suitable predictive model class among the aforementioned
model class candidates C1; C2; . . . ; C32. The prior plausibility of the
model classes is taken as uniform in this study:
PðCjÞ ¼ 1=32; j ¼ 1;2; . . . ;32. Finally, the evidence pðDjCjÞ can be
computed by Eq. (19).
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5.3. Analysis with strong ground motion measurements

5.3.1. Description of the database
A database of strong-motion records is obtained from the China

Earthquake Data Center [6]. In this study, the horizontal compo-
nents of the PGA records are considered and only the records with
M > 3:5 are utilized so M0 ¼ 3:5 in Eq. (34). There are totally 94
and 155 records observed from 19 and 13 stations in the Tangshan
and Xinjiang region, respectively. The classification of the site
foundation depends on its stiffness and the averaged shear velocity
over the upper 30 m is used as its measure [4]. Since only the soil/
rock types are given by the data center, the site class is defined in a
slightly different way from the original definition by Boore et al.
[4]. Specifically, granite, sandstone, bedrock, siltstone, and con-
glomerate are classified as class A. Alluvium, diluvium, and weath-
ering conglomerate are included in class B. Soft soil, clay and
subclay are classified as class C.

The range of log10PGA in the data lies in the interval of [�1,3].
The prior PDF for b1 in Eq. (34) is taken to be a uniform distribution
in this interval. For the other parameters (if they are included in a
predictive model class), they are also taken as uniform distribution
in order to let the data to infer the parameter values. By consider-
ing the previous work in [13,5,4], the range of the uniform distribu-
tion is taken as [�1,1] for b2; b3; b5; b6 and b7. For b4, it was
observed that it is much smaller from previous study. This is also
expected to happen in this case because r is much larger than
log10r in the range of the data. Specifically, the range for its uniform
distribution is taken to be [�0.01,0.01]. Note that as long as the
range is large enough, the values of the bounds do not affect the
identification results for the parameter vector h.

5.3.2. Tangshan region
Tangshan city is located in the North China Plain. Table 3 shows

the results of the predictive model class selection using the hori-
zontal records from this region. Only the top four, last four and
the full model classes are shown in table. The first column shows
the ranking of each predictive model class. A smaller number of
the ranking corresponds to a higher plausibility of the model class.
The second column shows the parameters being included in that
Table 3
Model class selection results (Tangshan).

Ranking Parameters pðDjhH; CjÞ rH

� lnOj PðCjjDÞ

1 1 2 3 5 5.54E�09 0.30 �14.56 7.04E�01
2 1 2 4 5 7.65E�10 0.30 �14.05 1.61E�01
3 1 2 3 4 5 5.72E�09 0.30 �16.43 1.13E�01
4 1 2 3 5 6 7 1.15E�08 0.29 �19.41 1.14E�02
7 1 2 3 4 5 6 7 1.15E�08 0.29 �21.27 1.78E�03

29 1 2 5.55E�23 0.42 �8.77 2.32E�12
30 1 6 7 8.42E�23 0.42 �10.33 7.36E�13
31 1 3 6 7 1.54E�21 0.40 �14.21 2.78E�13
32 1 2 6 7 1.04E�22 0.41 �12.92 6.81E�14

Table 4
Optimal parameters of each predictive model class (Tangshan).

Ranking b1 b2 ðM � 3:5Þ b3 ððM � 3:5Þ2Þ b4

1 1.9 (0.17) 0.76 (0.13) �0.19 (0.043) –
2 1.8 (0.19) 0.34 (0.06) – �0
3 1.9 (0.19) 0.73 (0.20) �0.17 (0.083) �0
4 1.8 (0.18) 0.76 (0.13) �0.19 (0.043) –
7 1.8 (0.19) 0.75 (0.20) �0.18 (0.083) �0

29 1.2 (0.06) �0.03 (0.06) – –
30 1.1 (0.06) – – –
31 1.2 (0.06) – �0.046 (0.019) –
32 1.2 (0.08) �0.039 (0.06) – –
model class, e.g., ‘1 2 3 5’ denotes a model class with four terms:
log10PGA ¼ b1 þ b2ðM � 3:5Þ þ b3ðM � 3:5Þ2 þ b5log10r. The third
and fourth columns show the maximum likelihood value and the
corresponding standard deviation of the fitting error. The fifth col-
umn shows the value of the log Ockham factor, lnOj, that indicates
the robustness of the model class, and the last column shows the
plausibility of each model class. The full model class with all the
seven terms has the largest maximum likelihood value. This is
intuitive because the full model class has the largest solution space
so it is capable to fit the dataset at least as well as any other model
classes with less free parameters. However, its robustness is not as
good as the other model classes and its log Ockham factor is
�21.27, which is the smallest among all the model class candi-
dates. Table 4 shows the optimal parameters of each model class.
The numbers in parenthesis denote the standard deviation of that
parameter calculated using the Bayesian approach. In order to bal-
ance the data fitting capability and robustness, a relatively simple
model class is selected and its optimal model is

log10PGA ¼ 1:9þ 0:76ðM � 3:5Þ � 0:19ðM � 3:5Þ2 � 0:86log10r

ð37Þ

where PGA is in cm/s2. The term �0:86log10r indicates that the PGA
decreases with an increasing site-to-hypocenter distance. The PGA
decreases by 45% ð� ð1� 2�0:86Þ � 100%Þwhen r is doubled without
change of other variables. This predictive model class has plausibil-
ity over 0.7 by the Bayesian model selection approach. The terms
b6GB and b7GC are not included in this model. By observing the mod-
el classes that include these two terms, one can see that the optimal
values of these coefficients are of similar order of its standard
deviation of the estimates, implying that the data does not provide
significant evidence for such terms to be included. Another note-
worthy point is on the model class log10PGA ¼ b1 þ b2ðM �M0Þ,
i.e., the 29th model class. The optimal value for b2 is negative and
it seems to imply that the larger the moment magnitude of an
earthquake, the smaller the PGA. However, this is only due to the
non-uniform distribution of M and r in the dataset. Specifically,
the correlation coefficient between the M and r is 0.64 in this data-
set. In other words, large value of M in a record often associates
ðrÞ b5 ðlog10rÞ b6 ðGBÞ b7 ðGCÞ

�0.86 (0.14) – –
.0025 (0.00066) �0.66 (0.17) – –
.00031 (0.0012) �0.83 (0.19) – –

�0.85 (0.13) 0.081 (0.07) 0.0033 (0.08)
.00011 (0.0012) �0.83 (0.19) 0.08 (0.07) 0.0031 (0.08)

– – –
– 0.10 (0.10) 0.026 (0.11)
– 0.13 (0.10) 0.014 (0.11)
– 0.11 (0.10) 0.024 (0.11)

Table 5
Model class selection results (Xinjiang).

Ranking Parameters pðDjhH; CjÞ rH

� lnOj PðCjjDÞ

1 1 2 5 6 7 4.47E�05 0.26 �17.92 2.23E�01
2 1 2 4 5 6 7 5.30E�04 0.25 �20.48 2.04E�01
3 1 3 5 6 7 1.39E�04 0.26 �19.16 2.00E�01
4 1 3 4 5 6 7 1.61E�03 0.25 �21.74 1.76E�01
8 1 2 3 4 5 6 7 2.31E�03 0.25 �23.87 3.00E�02

29 1 6 7 4.73E�15 0.30 �12.06 8.27E�09
30 1 5 6 7 9.16E�15 0.30 �13.94 2.45E�09
31 1 4 6 7 6.58E�15 0.30 �14.91 6.62E�10
32 1 4 5 6 7 9.29E�15 0.30 �16.28 2.38E�10



Table 6
Optimal parameters of each predictive model class (Xinjiang)

Ranking b1 b2 ðM � 3:5Þ b3 ððM � 3:5Þ2Þ b4 ðrÞ b5 ðlog10rÞ b6 ðGBÞ b7 ðGC Þ

1 1.9 (0.17) 0.22 (0.03) – – �0.4 (0.11) 0.24 (0.08) 0.06 (0.10)
2 2.4 (0.25) 0.24 (0.03) – 0.0015 (0.00068) �0.74 (0.19) 0.28 (0.08) 0.11 (0.10)
3 2.1 (0.17) – 0.067 (0.009) – �0.4 (0.11) 0.24 (0.08) 0.043 (0.10)
4 2.5 (0.25) – 0.073 (0.009) 0.0015 (0.00067) �0.75 (0.19) 0.27 (0.08) 0.092 (0.10)
8 2.5 (0.25) 0.082 (0.10) 0.05 (0.029) 0.0015 (0.00067) -0.76 (0.19) 0.27 (0.08) 0.097 (0.10)

29 1.7 (0.09) – – – – 0.093 (0.09) 0.12 (0.10)
30 1.9 (0.20) – – – �0.14 (0.12) 0.10 (0.09) 0.16 (0.11)
31 1.7 (0.09) – – �0.00038 (0.00046) – 0.093 (0.09) 0.13 (0.10)
32 2.0 (0.29) – – 0.00013 (0.00076) �0.17 (0.21) 0.10 (0.09) 0.16 (0.11)
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with large value of r, that reduces the PGA. Furthermore, the corre-
lation coefficient between the log10PGA and M is �0.0511 and hence
the optimal coefficient b2 is negative. Therefore, a model class with
too few free parameters may cause under-fitting to the data.

5.3.3. Xinjiang region
Xinjiang is in the North West of China. In the same fashion as in

Tables 3–6 show the predictive model class selection results and
the optimal parameters of each model class. From Table 6, the opti-
mal predictive model for the PGA is given by

log10PGA¼ 1:9þ 0:22ðM� 3:5Þ � 0:4log10rþ 0:24GB þ 0:06GC ð38Þ

Note that the first four model classes possess similar plausibil-
ity, implying that the Bayesian model selection method does not
have strong preference on the optimal model class. This is in con-
trast to the previous case in the Tangshan region, in which the
plausibility of the optimal model class is over 0.7. In this case with
the data of Xinjiang, a plausibility-weighted predictive formula can
be obtained:

log10PGA ¼ 2:21þ 0:122ðM � 3:5Þ þ 0:0327ðM � 3:5Þ2

þ 0:00071r � 0:56log10r þ 0:26GB þ 0:076GC ð39Þ

and the associated uncertainty of the parameters b1; b2; . . . ; b7 are:
0.21, 0.02, 0.006, 0.00047, 0.15, 0.08 and 0.097, respectively. Of
course, one may consider to include five or even more model classes
but the results will be virtually the same since the plausibilities of
the fifth and below model classes are small. One important point
is that this multi-mode predictive formula includes all seven terms
but it is not the ‘optimal model’ in the full model class (8th model
class in Table 6) as their parameter values are not the same. This
multi-model predictive formula (along with the posterior uncer-
tainty of the parameters) does not have the most powerful data fit-
ting capability but it possesses higher level of robustness than the
‘optimal model’ in the full model class.

6. Concluding remarks

Bayesian model class selection has attracted substantial interest
in recent years for selecting the most plausible/suitable class of
models among some specified model classes, based on system
measurements. This paper introduced some recent developments
of Bayesian model class selection and applications in civil engi-
neering. Asymptotic expansion and Monte Carlo method can be
used to compute the evidence of a model class. Special cases of lin-
ear and nonlinear regression formula are considered and Bayesian
model class selection is particularly useful in this case.

The method was applied to the design of ANN structure. The lack
of a practical and rigorous ANN design method is one of the major
obstacles in the applications of ANN in structural health monitoring
in practice. Although some guidelines were proposed in the litera-
ture, they depend highly on user’s judgment. The Bayesian ANN de-
sign method can be used to quantify the optimality of different
classes of ANN models based on the training data. It is also applied
to the selection of seismic attenuation empirical formula. A data-
base with 249 strong-motion records in Tangshan and Xinjiang of
China is utilized for the analysis. It turns out that the most plausible
model class is not the full relationship even though it gives the
smallest fitting error. If several predictive model classes possess
similar plausibility given the dataset, one can consider a multi-
model predictive formula as in the case of the Xinjiang region.
The Bayesian approach allows to obtain not only the optimal
parameters in a model class but also the associated uncertainty of
the parameter estimates. The quantified uncertainty can be further
used for the reliability of the prediction. Through the applications in
this paper, it is demonstrated that Bayesian identification and mod-
el class selection have high potential for applications in different
fields of civil engineering since there are many types of uncertainty
necessary to be considered. Other applications in the modeling and
prediction of air quality and soil compressibility index empirical
relationship have been studied but they are not introduced here
due to page limit.
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